| 研究生: |
王志偉 Chih-Wei Wang |
|---|---|
| 論文名稱: |
Bayesian Prediction on Longitudinal Data with Random Effects Covariance Matrix |
| 指導教授: |
樊采虹
Tsai-Hung Fan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 外文關鍵詞: | Bayesian inference, Cholesky decomposition, Random effects, Mixed model, Markov chain Monte Carlo, Prediction |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨機效應混合模型是時常被用來建構長時期追蹤資料的一類普遍模型。在實驗對象之中,這些模型的隨機效應共變異矩陣典型地被假設為常數。這篇論文中,我們採用一種特殊的Cholesky矩陣分解法去建構隨機效應共變異矩陣而且允許這種分解中所引進的參數是依賴實驗對象特性共變數。一種跟隨著Metropolis-Hastings步驟的Gibbs抽樣方法在這裡被實行用來幫助我們作出貝氏推論。此外,對於每個實驗對象,根據先前已觀測到的資料去預測未來的觀測資料是我們的另一個主題。一些模擬上的研究將被實行用來驗證我們的方法論以及常態分配測量誤差模型與學生t分配測量誤差模型在這裡將被比較。
Random effects (mixed) models are a common class of models used frequently to model longitudinal data. The random effects covariance matrix of these models is typically assumed constant across subject. In this thesis, we use a special Cholesky decomposition of the matrix to model the random effects covariance matrix and allow the parameters that result from this decomposition to depend on subject-specific covariates. A simple Gibbs sampler together with Metropolis-Hastings (M-H) steps can be implemented here to draw the Bayesian inference. Furthermore, predicting the future observations given the previous observed data for each subject is our another topic. Several simulation studies are carried out to demonstrate our methodologies and comparisons are make from both normal and t measurement error models.
Berger J.O. (1985) Statistical Decision Theory and Bayesian Analysis, 2nd Ed. Springer-Verlag, New York.
Carlin B.P. and Louis T.A. (2000) Bayes and Empirical Bayes Methods for Data Analysis, 2nd Ed. Chapman & Hall/CRC, New York.
Chib S. and Greenberg E. (1995) Understanding the Metropolis-Hastings algorithm. The American Statistician, 49, 327-335.
Chiu T.Y.M., Leonard T. and Tsui K-W. (1996) The matrix-logarithmic covariance model. Journal of the American Statistical Association, 91, 198-210.
Daniels M.J. and Kass R.E. (1999) Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94, 1254-1263.
Daniels M.J. and Pourahmadi M. (2002) Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553-566.
Daniels M.J. and Zhao Y.D. (2003) Modelling the random effects covariance matrix in longitudinal data. Statistics in Medicine, 22, 1631-1647.
Davidian M. and Giltinan D.M. (1995) Nonlinear Models for Repeated Measurement Data. Chapman and Hall/CRC, New York.
Diggle P.J., Liang K-Y and Zeger S.L. (1994) Analysis of Longitudinal Data. Oxford University Press, New York.
Geisser S. (1993) Predictive Inference. Chapman and Hall, London.
Graybill F. (1976) Theory and Application of the Linear Model. Wadsworth, California.
Geman S. and Geman D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6, 721-741.
Gilks W.R. and Wild P. (1992) Adaptive rejection sampling for Gibbs sampling. J. Roy. Statist. Soc., Ser. C (Applied Statistics), 41, 337-348.
Hastings W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
Laird N.M. and Ware J.J. (1982) Random-effects models for longitudinal data. Biometrics, 38, 973-9.
Leonard T. and Hsu J.S.J. (1992) Bayesian inference for a covariance matrix. Annals of Statistics, 20, 1669-1696.
Lin X., Raz J. and Harlow S.D. (1997) Linear mixed models with heterogeneous within-cluster variances. Biometrics, 53, 910-923.
Mathews V.J. and Sicuranza G.L. (2000) Polynomial Signal Processing. John Wiley & Sons, New York.
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E. (1953) Equations of state calculations by fast computing machines. J. Chemical Physics, 21, 1087-1091.
Pourahmadi M. (1999) Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika, 86, 677-690.
Pourahmadi M. (2000) Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika, 87, 425-435.
Pourahmadi M. and Daniels M.J. (2002) Dynamic conditional linear mixed models for longitudinal data. Biometrics, 58, 225-231.
Rao C.R. (1973) Linear Statistical Inference and its Applications, 2nd Ed. John Wiley, New York.
Ross S.M. (2002) Simulation, 3rd Ed. Academic Press, New York.
Searle S.R., Casella G. and McCulloch C.E. (1992) Variance Components. John Wiley & Sons, New York.
Spiegelhalter D.J., Best N.G., Carlin B.P. and Linde A. (2002) Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583-639.
Zhang F. and Weiss R.E. (2000) Diagnosing explainable heterogeneity of variance in random effects models. Journal of Statistics, 28, 3-18.