跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡惠君
Hui-Chun Chien
論文名稱: 矽基微柱狀透鏡於光耦合之研究
指導教授: 張正陽
Jeng-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 中文
論文頁數: 56
中文關鍵詞: 耦合效率透鏡矽基板微型光學平台
外文關鍵詞: coupling efficiency, Silicon-based, lens, micro-optical-bench
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的在研究以矽為基板之微柱狀透鏡來提高光學元件間之耦合效率(Coupling Efficiency),利用在微型光學平台(Micro-Optical Bench,MOB)上,結合半導體製程技術可在矽基板上製作,精確將各元件定位,降低封裝上的誤差。本文所設計出之矽基微柱狀透鏡具有一個維度聚焦能力,將其應用在工作距離約100~200μm之雷射二極體-光纖耦合上。而且利用半導體製程,直接在矽基板上成長蝕刻出透鏡輪廓,具有微小化,低成本且高量產可能性等優點。模擬之光耦合效率在工作距離約100~200μm及不考慮反射損耗(Fresnel Loss)下,約20~40 %,並對元件的製作與系統之量測皆有提出完整的說明及討論。


    The monolithic micro-cylindrical si lens is proposed for increasing
    the coupling efficiency between Laser Diode and Single Mode Fiber.
    Although the cylindrical lens only has one-dimensional focusing ability,
    the coupling efficiency of 20~40% is still designed in the short working
    distance of 100~200 μm. By using the micro-optical-bench (MOB)
    technology, the optical elements can be precisely aligned on the chip. The
    profile is properly defined by the mask, and is fabricated by deep dry
    etching. In addition, the strong Fresnel loss is improved by the
    anti-reflection coating of SiO2 film. The measurement results show the
    highly consistence of the designed structure. In summary, this proposed
    coupler module posses the characteristics of minimized, low cost and
    high mass production possibility.

    摘要 I 目錄 IV 圖目錄 VI 第一章 緒論 1-1 前言 1 1-2 微光學系統 3 1-3 論文內容與架構簡介 5 第二章 相關理論介紹 2-1 光線追跡法(Ray Tracing) 6 2-2 高斯光傳遞理論 10 2-3 光束傳播法(Beam Propagation Method,BPM) 14 2-4 光纖的耦合 16 第三章 矽基微柱狀透鏡之元件設計與分析 3-1 雷射二極體-光纖耦合模組之簡介 22 3-2 矽基微柱狀透鏡應用於光耦合系統之設計概念 26 3-3 設計流程與模擬結果 28 第四章 元件製作與量測 4-1 矽基微柱狀透鏡之製作與規格量測 34 4-2 矽基微柱狀透鏡應用在雷射二極體-光纖耦合模組之製作 41 4-3 系統耦合效率之量測 42 4-4 量測結果之分析與討論 48 第五章 結論與未來展望 55 參考文獻 56

    1. L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of Novel Monolithic Free-Space Optical Disk Pickup Heads by Surface Micromachining," Opt. Lett., 21(2), p. 155-157, 1996.
    2. J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of Free Space Optical Pickup Head with Stacked Si-Based Phase Element,"IEEE Photonics Technology Letters, vol. 17, pp. 214-216 , Jan. 2005. SCI/EI
    3. Jun-ichi Shimada, Osamu Ohguchi, and Renshi Sawada, ”Microlens Fabricated by the Planar Process,” J. Lightwave Technology, 9, 571-576(1991)
    4. Virendra N. Mahajan, Optics imaging and aberrations, SPIE Optical Engineering Press(1998)
    5. Joseph M. Geary, Introduction to Lens Design, Willmann-Bell, Inc.(2002)
    6. Rsoft Design Group, Beam Prop 5.1.1 Manual, Rsoft Design Group, Inc.(1993-2003)
    7. Frank L. Pedrotti, Leno S. Pedrotti, Introduction to Optics, (Prentice-Hall, 1987)
    8. 李俊叡, 鼓形透鏡用於單模光纖收發器之設計, (中央大學光電所碩士論文, 台灣, 2003)
    9. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, John Wiley (1991).
    10. J. W. Goodman , “ Introduction to Fourier Optics” , McGraw-Hill , p.32 (1996)
    11. A. Yariv, and P. Yeh, “Optical Waves in Crystals” , Mei Ya, 1984.
    12. 藍孝晉, Grismlens複合式分波多工器系統, 中央大學光電科學研究所碩士論文, 2004
    13. code V Technology note, BPR Diffraction-based Beam Propagation, (Optical Research Associates, America)
    14. ASAP Technical Guide, Breault Research Organization, Inc.
    15. Y. Aoki, T. Kato, R. J. Mizuno and K. Iga, “Miro-optical bench for alignment-free optical coupling,” Appl. Opt., 38, p. 963-965, 1999.
    16. Amnon Yariv, Optical Electronics in modern communications, New York : Oxford University Press(1997)
    17. I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices, ” IEEE J. Select. Topics Quant. Electron., 3, 1308, 1997.
    18. K. Shiraishi, and N. Hiraguri, “A lensed fiber with cascaded GI-fiber configuration for efficient coupling between LDs to single-mode fibers,” ECOC’98, 20-24, 355, 1998.
    19. K. Shiraishi and S. I. Kuroo, “A new lensed-fiber configuration employing cascaded GI-fiber chips,” J. Lightwave Technol., 18, 787, 2000.
    20. S. K. Mondal, S. Gangopadhyay, and S. Sarkar, “Analysis of an upside-down
    21. B. Hubner, G. Vollrath, R. Ries, C. Greus, H. Janning, E. Ronneberg, E. Kuphal, B. Kempf, R. Gobel, F. Fiedler, R. Zengerle, and H. Burkhard, “Laser diodes with integrated spot-size transformer as low-cost optical transmitter elements for telecommunications, ” IEEE J. Select. Topics Quant. Electron., 3, 1372, 1997.
    22. G. A. Vawter, R. E. Smith, H. Hou, and J. R. Wendt, “Semiconductor laser with tapered-rib adiabatic-following fiber coupler for expanded output-mode diameter, ” IEEE Photon. Technol. Lett., 9, 425, 1997.
    23. X. Yan, M. L. Masanovic, E. J. Skogen, Z. Hu, D. J. Blumenthal, and L. A. Coldren, “Optical mode converter integration with InP-InGaAsP active and passive waveguides using a single regrowth process, ” IEEE Photon. Technol. Lett., 14, 1249, 2002.
    24. T. Wongcharoen, B. M. A. Rahman, M. Rajarajan, and K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling, ” J. Lightwave Technol., 19, 708, 2001.
    25. K. Shiraishi, and N. Hiraguri, “A lensed fiber with cascaded GI-fiber configuration for efficient coupling between LDs to single-mode fibers,” ECOC’98, 20-24, 355, 1998.
    26. K. Shiraishi and S. I. Kuroo, “A new lensed-fiber configuration employing cascaded GI-fiber chips,” J. Lightwave Technol., 18, 787, 2000.
    27. S. K. Mondal, S. Gangopadhyay, and S. Sarkar, “Analysis of an upside-down taper lens and from a single-mode step-index fiber,” Appl. Opt., 37, 1006, 1998.
    28. R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt., 36, 3435, 1997.
    29. M. Sumida, and K. Takemoto, “Lens aberration effect on a laser-diode-to-single-mode-fibre coupler,” Electron. Lett., 18, 586, 1982.
    30. R. G. Wilson, “Ball-lens coupling efficiency for laser-diode to single-mode fiber: comparison of independent studies by distinct methods,” Appl. Opt., 37, 3201, 1998.
    31. Y. Fu, and N. K. A. Bryan, “Hybrid microdiffractive-microrefractive lens with a continuous relief fabricated by use of focused-ion-beam milling for single-mode fiber coupling, ” Appl. Opt., 40, 5872, 2001.
    32. Jun-ichi Shimada, Osamu Ohguchi, and Renshi Sawada, “Focusing Characteristics of a Wide-Striped Laser Diode Integrated with a Microlens,” J. Lightwave Technology, 12, 936-942(1994)
    33. Jun-ichi Shimada, Osamu Ohguchi, and Renshi Sawada, ”Microlens Fabricated by the Planar Process,” J. Lightwave Technology, 9, 571-576(1991)
    34. 10J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, DC, 1989).

    QR CODE
    :::