跳到主要內容

簡易檢索 / 詳目顯示

研究生: 亞維明
Velusamy Arulmozhi
論文名稱: Synthesis and Characterization of Small molecular Organic Semiconductors: Applications in Organic Electronics
指導教授: 陳銘洲
Ming-Chou Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 225
中文關鍵詞: 有機小分子有機半導體有機場效電晶體染料敏化電池鈣鈦礦電池
外文關鍵詞: organic small molecules, organic semiconductors, organic field-effect transistors, dye-sensitized solar cells, perovskite solar cells
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要可分為有機薄膜電晶體 (OFET)、染料敏化太陽能電池 (DSSC) 和鈣鈦
    礦太陽能電池 (PSC) 的材料開發。
    有機薄膜電晶體 (OFET) 的部分分為 N-type 及 P-type 材料,本研究成功以 TII
    為核心,開發出四種不同碳鏈之醌型結構材料,包含 TIIQ-10、TIIQ-b8、TIIQ-b16 和
    TIIQ-b17,其中 TIIQ-b16 在 N-type OFET 中表現出高達 2.54 cm2
    V
    -1
    s
    -1 的電子遷移
    率,電流開關比為 105
    ~106,具有單極電子傳輸特性和強環境穩定性。同時成功以 DTTR 為
    核心,外接不同共軛基團,開發另一系列材料 DFPT-DTTR 及 DFPbT-DTTR,其中 DFPTDTTR 在 P-type OFET 中表現出高達 0.48 cm2
    V
    -1
    s
    -1 的電洞遷移率。
    鈣鈦礦太陽能電池 (PSC) 的部分,本研究利用 BCDT 作為核心,接上不同苯基烷
    氧鏈,再分別於末端接上拉電子基團 IN、INCl 與 INBr,共開發出六種材料 INBCDT-8、
    INBCDT-b8、INClBCDT-8、INClBCDT-b8、INBrBCDT-8、INBrBCDT-b8,其中以 INBrBCDT-b8 應
    用於 PSC 中可獲得高達 22.20% 的 PCE 值,FF 值為 79%,JSC 值為 24.44 mA cm-2,VOC
    值為 1.15 V ,還可有效地鈍化表面缺陷並增強元件界面處的電荷傳輸能力。同時成功合
    成出以 maleimide 為核心的材料 MLIBP’-4D,其 PCE 值高達 21.20%。
    目前已成功合成出應用於 OFET、DSSC 和 PSC 的共軛醌型化合物、有機染敏材料
    和電洞傳輸材料,這些新材料經由 UV-Vis 及 DPV 測量其光學及電化學性質、DSC 及 TGA
    測量其熱穩定性,且利用 X 射線衍射、原子力顯微鏡 (AFM) 和掠入射 X 射線衍射
    (GIXRD) 了解分子結構、分子堆疊、薄膜形態、結晶度和元件效能之間的關係,多項材料
    應用之光電元件正在優化中。


    A number of small molecular organic semiconductors have been designed and synthesized for
    various organic electronics device applications such as organic field-effect transistors (OFETs),
    dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). The optical, and
    electrochemical properties of these newly synthesized materials were examined using differential
    pulse voltammetry (DPV), and UV-Visible absorption spectroscopy. Thermal properties were
    investigated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA).
    Thin-film microstructure and film morphology were examined by X-ray diffraction, atomic force
    microscopy (AFM), and grazing incidence X-ray diffraction (GIXRD) to understand the
    relationship between the molecular structure, film morphology/crystallinity, and device
    performance. The molecular structures of organic semiconductors and their molecular packing
    properties were determined by single-crystal X-ray diffraction. In this research, air-processed
    TIIQ-b16 OFETs exhibit electron mobility up to 2.54 cm2 V
    −1
    s
    −1 with a current ON/OFF ratio of
    105–106
    exhibiting unipolar electron transport characteristics and enhanced ambient stability.
    DFPT-DTTR compound based OFETs exhibit efficient hole transport mobility up to 0.48 cm2 V
    −1
    s
    −1
    . Non-fullerene acceptor (INBrBCDT-b8) was used as an anti-solvent in PSCs yielding an
    excellent PCE of up to 22.20% with FF of 79%, a JSC of 24.44 mA cm-2
    , and a VOC of 1.15 V, also
    effectively passivate surface defects and enhance charge transport at the device interface. Further,
    maleimide-based HTM (MLIBP’-4D) with tetra-substituted triphenylamine donors exhibits highperformance PCE reaching up to 21.20 % in PSCs. Several conjugated quinoidal compounds,
    organic dyes, and hole-transporting materials (HTMs) have been synthesized for OFETs, DSSCs,
    and PSCs, respectively. Presently, device characterization and optimization of these newly
    developed small molecules are in progress for future publications.

    Table of Contents 摘要.................................................................................................................................................. i Abstract.......................................................................................................................................... ii Acknowledgements ......................................................................................................................iii List of Figures............................................................................................................................... ix List of Schemes............................................................................................................................ xv List of Tables............................................................................................................................... xvi Chapter Ⅰ ..................................................................................................................................... 1 Introduction................................................................................................................................... 1 1.1. Introduction.......................................................................................................................... 3 1.2. Applications of organic semiconductors.............................................................................. 8 1.2.1. Organic field-effect transistors (OFETs)....................................................................... 8 1.3. Perovskite solar cells (PSCs) ............................................................................................. 12 1.4. Dye-sensitized Solar Cells (DSSCs).................................................................................. 14 Chapter Ⅱ ................................................................................................................................... 17 n-type organic field-effect transistors (OFETs)........................................................................ 17 Thienoisoindigo (TII)-Based Quinoidal Small Molecules for High-Performance n-Type OFETs ...................................................................................................................................... 19 2.1. Abstract .............................................................................................................................. 19 2.2. Introduction........................................................................................................................ 19 2.3. Results and Discussion ...................................................................................................... 24 2.3.1. Synthesis..................................................................................................................... 24 2.3.2. Physical Characterization............................................................................................ 26 2.3.3. Theoretical Calculations ............................................................................................. 30 2.3.4. Single Crystal Structure .............................................................................................. 31 2.3.5. Charge Transport Properties ....................................................................................... 35 2.3.6. Thin Film Morphology and Structural Analysis......................................................... 38 2.3.7. OFET stability............................................................................................................. 45 2.4. Experimental Section......................................................................................................... 47 2.4.1. General Procedures for Final Target Compounds (1-4):............................................. 47 2.4.2. Characterization:......................................................................................................... 48 2.4.3. Device Fabrication and Measurement: ....................................................................... 49 2.5. Conclusion ......................................................................................................................... 50 Difuran-dithioalkyl based Quinoidal Compounds for n-type OFETs................................ 51 2.6. Introduction........................................................................................................................ 51 2.7. Results and Discussion: ..................................................................................................... 53 2.7.1. Synthesis..................................................................................................................... 53 2.7.2. Physical Characterization............................................................................................ 54 2.7.3. Single Crystal Structure .............................................................................................. 57 2.8. Experimental Section......................................................................................................... 62 2.8.1. General Procedures for Final Target Compounds (1–3):............................................ 62 2.9. Conclusion ......................................................................................................................... 63 Diselenophene-dithioalkyl based Quinoidal Compounds for n-type OFETs .................... 64 2.10. Introduction...................................................................................................................... 64 2.11. Results and Discussion: ................................................................................................... 66 2.11.1. Synthesis ................................................................................................................... 66 2.11.2. Physical Characterization.......................................................................................... 67 2.12. Experimental Section....................................................................................................... 70 2.12.1. General Procedures for Final Target Compounds (1–3): .......................................... 70 2.13. Conclusion ....................................................................................................................... 71 Chapter Ⅲ ................................................................................................................................... 73 p-type organic field-effect transistors (OFETs)........................................................................ 73 Solution Processable Pentafluorophenyl End-capped Dithienothiophene (DTTR) Organic Semiconductors for Efficient p-type Organic Field Effect Transistors.............................. 75 3.1. Abstract .............................................................................................................................. 75 3.2. Introduction........................................................................................................................ 75 3.3. Results and Discussion ...................................................................................................... 79 3.3.1. Synthesis..................................................................................................................... 79 3.3.2. Physical Characterization............................................................................................ 81 3.3.3. Theoretical Calculations ............................................................................................. 85 3.3.4. Charge Transport Properties ....................................................................................... 86 3.3.5. Thin Film Morphology and Structural Analysis......................................................... 88 3.4. Experimental Section......................................................................................................... 90 3.4.1. General Procedures for Final Target Compounds (1-2):............................................. 90 3.4.2. OFET devices fabrication and characterization:......................................................... 92 3.5. Conclusion ......................................................................................................................... 93 Chapter Ⅳ ................................................................................................................................... 95 Non-fullerene Acceptors (NFAs)................................................................................................ 95 Grain Boundary Passivation in Perovskite Solar Cells by Bicyclopentadithiophene (BCDT)-based Organic Semiconductor for High Performance and Stability .................. 97 4.1. Abstract .............................................................................................................................. 97 4.2. Introduction........................................................................................................................ 97 4.2. Results and Discussion .................................................................................................... 102 4.2.1. Synthesis................................................................................................................... 102 4.2.2. Thermal, optical, and electrochemical properties..................................................... 104 4.2.3. The morphology and photo-physics of the perovskite films with and without passivation, as well as the photovoltaic performance and stability of the corresponding cells ..............................................................................................................................................111 4.3. Experimental Section....................................................................................................... 126 4.3.1. Materials ................................................................................................................... 126 4.3.2. Synthesis of INXBCDT target compounds and its intermediates.............................. 127 4.4. Conclusion ....................................................................................................................... 136 Chapter Ⅴ ................................................................................................................................. 137 Dye-Sensitized Solar Cells (DSSCs) ........................................................................................ 137 Alkyl (R), thioalkyl (SR) substituted Terthiophene (tT) and Bithiophene imide (BTI)-based Organic Sensitizers for Dye-Sensitized Solar cell Applications............................................ 139 5.1. Introduction...................................................................................................................... 139 5.2. Results and Discussion .................................................................................................... 141 5.2.1. Synthesis of dyes (1-4).............................................................................................. 141 5.2.2. Synthesis of dyes (5 and 6)....................................................................................... 142 5.2.3. Thermogravimetric analysis...................................................................................... 143 5.2.4. Optical properties...................................................................................................... 145 5.2.5. Electrochemical properties........................................................................................ 146 5.3. Experimental Section....................................................................................................... 148 5.3.1. General Procedures for Final Target Compounds (1-4):........................................... 148 5.3.2. General Procedures for Final Target Compounds (5-6):........................................... 150 5.4. Conclusion ....................................................................................................................... 152 Chapter Ⅵ ................................................................................................................................. 153 Hole-transporting materials (HTMs)...................................................................................... 153 Aryl functionalized-Maleimides with triphenylamine donors as Hole-Transporting Materials for Perovskite Solar Cells.................................................................................... 155 6.1. Introduction...................................................................................................................... 155 6.2. Results and Discussion .................................................................................................... 157 6.2.1. Synthesis................................................................................................................... 157 6.2.2. Thermogravimetric analysis...................................................................................... 158 6.2.3. Optical properties...................................................................................................... 159 6.2.4. Electrochemical properties........................................................................................ 161 6.3. Experimental Section....................................................................................................... 162 6.3.1. General Procedures for Final Target Compounds (1-4):........................................... 162 6.4. Conclusion ....................................................................................................................... 163 Chapter Ⅶ ................................................................................................................................. 165 Conclusion ................................................................................................................................. 165 7.1. Conclusion ....................................................................................................................... 167 References.................................................................................................................................. 169 Publications ............................................................................................................................... 195 Supporting Information ........................................................................................................... 197

    References
    [1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
    [2] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99.
    [3] M. Muccini, Nat. Mater. 2006, 5, 605.
    [4] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
    [5] Z. Chen, W. Li, M. A. Sabuj, Y. Li, W. Zhu, M. Zeng, C. S. Sarap, M. M. Huda, X. Qiao, X. Peng, D. Ma, Y. Ma, N. Rai, F. Huang, Nat. Commun. 2021, 12, 5889.
    [6] L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science 2018, 361, 1094.
    [7] Z. Wu, Y. Zhai, H. Kim, J. D. Azoulay, T. N. Ng, Acc. Chem. Res. 2018, 51, 3144.
    [8] C. Wang, X. Zhang, W. Hu, Chem. Soc. Rev. 2020, 49, 653.
    [9] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct. Mater. 2020, 30, 1904545.
    [10] Q. Zhang, Y. Sun, W. Xu, D. Zhu, Adv. Mater. 2014, 26, 6829.
    [11] X. Guo, A. Facchetti, T. J. Marks, Chem. Rev. 2014, 114, 8943.
    [12] S. N. Afraj, C.-C. Lin, A. Velusamy, C.-H. Cho, H.-Y. Liu, J. Chen, G.-H. Lee, J.-C. Fu, J.-S. Ni, S.-H. Tung, S. Yau, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. n/a, 2200880.
    [13] I. Osaka, K. Takimiya, Adv. Mater. 2017, 29, 1605218.
    [14] G.-H. Lee, H. Moon, H. Kim, G. H. Lee, W. Kwon, S. Yoo, D. Myung, S. H. Yun, Z. Bao, S. K. Hahn, Nat. Rev. Mater. 2020, 5, 149.
    [15] Y. Shi, H. Guo, J. Huang, X. Zhang, Z. Wu, K. Yang, Y. Zhang, K. Feng, H. Y. Woo, R. P. Ortiz, M. Zhou, X. Guo, Angew. Chem., Int. Ed. 2020, 59, 14449.
    [16] J. Xu, H.-C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y.-H. Kim, G.-J. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y.-Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann, Z. Bao, Nat. Mater. 2019, 18, 594.
    [17] M. Saito, T. Fukuhara, S. Kamimura, H. Ichikawa, H. Yoshida, T. Koganezawa, Y. Ie, Y. Tamai, H. D. Kim, H. Ohkita, I. Osaka, Adv. Energy Mater. 2020, 10, 1903278.
    [18] H. Li, J. Wu, K. Takahashi, J. Ren, R. Wu, H. Cai, J. Wang, H. L. Xin, Q. Miao, H. Yamada, H. Chen, H. Li, J. Am. Chem. Soc. 2019, 141, 10007.
    [19] Y. Shirota, J. Mater. Chem. 2000, 10, 1.
    [20] J. D. Myers, J. Xue, Polym. Rev. 2012, 52, 1.
    [21] S. R. Forrest, M. E. Thompson, Chem. Rev. 2007, 107, 923.
    [22] C. J. Kousseff, R. Halaksa, Z. S. Parr, C. B. Nielsen, Chem. Rev. 2022, 122, 4397.
    [23] V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 086602.
    [24] J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 2007, 90, 102120.
    [25] M. A. Reyes-Martinez, A. J. Crosby, A. L. Briseno, Nat. Commun. 2015, 6, 6948.
    [26] J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482.
    [27] K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubo, Y. Kunugi, J. Am. Chem. Soc. 2006, 128, 12604.
    [28] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732.
    [29] T. Izawa, E. Miyazaki, K. Takimiya, Adv. Mater. 2008, 20, 3388.
    [30] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins, J. Org. Chem. 1995, 60, 532.
    [31] M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem., Int. Ed. 2010, 49, 740.
    [32] C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C.-a. Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 28, 8456.
    [33] A. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J. R. Currie, B. G. Penn, J. Photonics Energy 2015, 5, 057402.
    [34] NREL, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html.
    [35] H. D. Pham, T. C.-J. Yang, S. M. Jain, G. J. Wilson, P. Sonar, Adv. Energy Mater. 2020, 10, 1903326.
    [36] G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778.
    [37] C. Yao, X. Chen, Y. He, Y. Guo, I. Murtaza, H. Meng, RSC Adv. 2017, 7, 5514.
    [38] N. Wang, A. Yang, Y. Fu, Y. Li, F. Yan, Acc. Chem. Res. 2019, 52, 277.
    [39] X. Zhang, H. Dong, W. Hu, Adv. Mater. 2018, 30, 1801048.
    [40] X. Wu, S. Mao, J. Chen, J. Huang, Adv. Mater. 2018, 30, 1705642.
    [41] B. Kang, W. H. Lee, K. Cho, ACS Appl. Mater. Interfaces 2013, 5, 2302.
    [42] J. Yang, Z. Zhao, S. Wang, Y. Guo, Y. Liu, Chem 2018, 4, 2748.
    [43] A. Marrocchi, A. Facchetti, D. Lanari, C. Petrucci, L. Vaccaro, Energy Environ. Sci. 2016, 9, 763.
    [44] T. Erdmann, S. Fabiano, B. Milian-Medina, D. Hanifi, Z. Chen, M. Berggren, J. Gierschner, A. Salleo, A. Kiriy, B. Voit, A. Facchetti, Adv. Mater. 2016, 28, 9169.
    [45] X. Guo, J. Quinn, Z. Chen, H. Usta, Y. Zheng, Y. Xia, J. W. Hennek, R. P. Ortiz, T. J. Marks, A. Facchetti, J. Am. Chem. Soc. 2013, 135, 1986.
    [46] M. Natali, S. D. Quiroga, L. Passoni, L. Criante, E. Benvenuti, G. Bolognini, L. Favaretto, M. Melucci, M. Muccini, F. Scotognella, F. Di Fonzo, S. Toffanin, Adv. Funct. Mater. 2017, 27, 1605164.
    [47] J. Mun, J. Kang, Y. Zheng, S. Luo, H.-C. Wu, N. Matsuhisa, J. Xu, G.-J. N. Wang, Y. Yun, G. Xue, J. B.-H. Tok, Z. Bao, Adv. Mater. 2019, 31, 1903912.
    [48] J. Mun, G.-J. N. Wang, J. Y. Oh, T. Katsumata, F. L. Lee, J. Kang, H.-C. Wu, F. Lissel, S. Rondeau-Gagné, J. B.-H. Tok, Z. Bao, Adv. Funct. Mater. 2018, 28, 1804222.
    [49] S. R. Forrest, Nature 2004, 428, 911.
    [50] E. K. Lee, M. Y. Lee, C. H. Park, H. R. Lee, J. H. Oh, Adv. Mater. 2017, 29, 1703638.
    [51] S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, H. Sirringhaus, Nat. Mater. 2020, 19, 491.
    [52] A. F. Paterson, T. D. Anthopoulos, Nat. Commun. 2018, 9, 5264.
    [53] D. Bharath, S. Chithiravel, M. Sasikumar, N. R. Chereddy, B. Shanigaram, K. Bhanuprakash, K. Krishnamoorthy, V. J. Rao, RSC Adv. 2015, 5, 94859.
    [54] H. Usta, D. Kim, R. Ozdemir, Y. Zorlu, S. Kim, M. C. Ruiz Delgado, A. Harbuzaru, S. Kim, G. Demirel, J. Hong, Y.-G. Ha, K. Cho, A. Facchetti, M.-G. Kim, Chem. Mater. 2019, 31, 5254.
    [55] Y. Wang, H. Guo, A. Harbuzaru, M. A. Uddin, I. Arrechea-Marcos, S. Ling, J. Yu, Y. Tang, H. Sun, J. T. López Navarrete, R. P. Ortiz, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2018, 140, 6095.
    [56] J. Wu, Q. Li, G. Xue, H. Chen, H. Li, Adv. Mater. 2017, 29, 1606101.
    [57] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct. Mater. 2020, 30, 1904545.
    [58] Y. Sun, Y. Guo, Y. Liu, Mater. Sci. Eng. 2019, 136, 13.
    [59] Y. Wang, L. Sun, C. Wang, F. Yang, X. Ren, X. Zhang, H. Dong, W. Hu, Chem. Soc. Rev. 2019, 48, 1492.
    [60] A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater. 2018, 30, 1801079.
    [61] J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724.
    [62] H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, K. Mullen, J. Am. Chem. Soc. 2011, 133, 2605.
    [63] X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728.
    [64] H. Li, F. S. Kim, G. Ren, S. A. Jenekhe, J. Am. Chem. Soc. 2013, 135, 14920.
    [65] H. Li, T. Earmme, G. Ren, A. Saeki, S. Yoshikawa, N. M. Murari, S. Subramaniyan, M. J. Crane, S. Seki, S. A. Jenekhe, J. Am. Chem. Soc. 2014, 136, 14589.
    [66] B. J. Jung, N. J. Tremblay, M.-L. Yeh, H. E. Katz, Chem. Mater. 2011, 23, 568.
    [67] X. Gao, Y. Hu, J. Mater. Chem. C 2014, 2, 3099.
    [68] A. Naibi Lakshminarayana, A. Ong, C. Chi, J. Mater. Chem. C 2018, 6, 3551.
    [69] J. T. E. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, J. Mater. Chem. C 2017, 5, 8654.
    [70] H. Sun, J. Gerasimov, M. Berggren, S. Fabiano, J. Mater. Chem. C 2018, 6, 11778.
    [71] Y. Zhao, Y. Guo, Y. Liu, Adv. Mater. 2013, 25, 5372.
    [72] T. Lei, J. H. Dou, J. Pei, Adv. Mater. 2012, 24, 6457.
    [73] J.-H. Dou, Y.-Q. Zheng, T. Lei, S.-D. Zhang, Z. Wang, W.-B. Zhang, J.-Y. Wang, J. Pei, Adv. Funct. Mater. 2014, 24, 6270.
    [74] B. Fu, J. Baltazar, A. R. Sankar, P.-H. Chu, S. Zhang, D. M. Collard, E. Reichmanis, Adv. Funct. Mater. 2014, 24, 3734.
    [75] J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater. 2014, 26, 5782.
    [76] C. Wang, Y. Qin, Y. Sun, Y. S. Guan, W. Xu, D. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 15978.
    [77] F. Zhang, Y. Hu, T. Schuettfort, C. A. Di, X. Gao, C. R. McNeill, L. Thomsen, S. C. Mannsfeld, W. Yuan, H. Sirringhaus, D. Zhu, J. Am. Chem. Soc. 2013, 135, 2338.
    [78] I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 328.
    [79] I. Osaka, R. Zhang, G. Sauvé, D.-M. Smilgies, T. Kowalewski, R. D. McCullough, J. Am. Chem. Soc. 2009, 131, 2521.
    [80] R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, L. J. Richter, M. L. Chabinyc, M. F. Toney, M. Heeney, I. McCulloch, Macromolecules 2007, 40, 7960.
    [81] L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, F. Naso, Nat. Mater. 2008, 7, 412.
    [82] C. Zhang, D. Yuan, H. Wu, E. Gann, L. Thomsen, C. R. McNeill, C.-a. Di, X. Zhu, D. Zhu, J. Mater. Chem. C 2017, 5, 1935.
    [83] J. Zhang, J. Jin, H. Xu, Q. Zhang, W. Huang, J. Mater. Chem. C 2018, 6, 3485.
    [84] B. Kang, F. Ge, L. Qiu, K. Cho, Adv. Electron. Mater. 2017, 3, 1600240.
    [85] L. Ren, D. Yuan, X. Zhu, Chem. - Asian J. 2019, 14, 1717.
    [86] Y. Teshima, M. Saito, T. Fukuhara, T. Mikie, K. Komeyama, H. Yoshida, H. Ohkita, I. Osaka, ACS Appl. Mater. Interfaces 2019, 11, 23410.
    [87] Y. Wang, H. Guo, S. Ling, I. Arrechea-Marcos, Y. Wang, J. T. López Navarrete, R. P. Ortiz, X. Guo, Angew. Chem. Int. Ed. 2017, 56, 9924.
    [88] S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2017, 27, 1606761.
    [89] C. Zhang, Y. Zang, E. Gann, C. R. McNeill, X. Zhu, C. A. Di, D. Zhu, J. Am. Chem. Soc. 2014, 136, 16176.
    [90] C. Zhang, X. Zhu, Acc. Chem. Res. 2017, 50, 1342.
    [91] J. Liu, R. Zhang, I. Osaka, S. Mishra, A. E. Javier, D.-M. Smilgies, T. Kowalewski, R. D. McCullough, Adv. Funct. Mater. 2009, 19, 3427.
    [92] Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, H. Li, Adv. Mater. 2016, 28, 5949.
    [93] Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem. Mater. 2011, 23, 3138.
    [94] S. Wang, M. Wang, X. Zhang, X. Yang, Q. Huang, X. Qiao, H. Zhang, Q. Wu, Y. Xiong, J. Gao, H. Li, Chem. Commun. 2014, 50, 985.
    [95] G. Lin, Y. Qin, J. Zhang, Y.-S. Guan, H. Xu, W. Xu, D. Zhu, J. Mater. Chem. C 2016, 4, 4470.
    [96] H. Wu, Y. Wang, X. Qiao, D. Wang, X. Yang, H. Li, Chem. Mater. 2018, 30, 6992.
    [97] R. S. Ashraf, A. J. Kronemeijer, D. I. James, H. Sirringhaus, I. McCulloch, Chem. Commun. 2012, 48, 3939.
    [98] D. Yoo, T. Hasegawa, M. Ashizawa, T. Kawamoto, H. Masunaga, T. Hikima, H. Matsumoto, T. Mori, J. Mater. Chem. C 2017, 5, 2509.
    [99] B. Nketia-Yawson, H. Kang, E.-Y. Shin, Y. Xu, C. Yang, Y.-Y. Noh, Org. Electron. 2015, 26, 151.
    [100] I. Meager, M. Nikolka, B. C. Schroeder, C. B. Nielsen, M. Planells, H. Bronstein, J. W. Rumer, D. I. James, R. S. Ashraf, A. Sadhanala, P. Hayoz, J.-C. Flores, H. Sirringhaus, I. McCulloch, Adv. Funct. Mater. 2014, 24, 7109.
    [101] C.-M. Chen, S. Sharma, Y.-L. Li, J.-J. Lee, S.-A. Chen, J. Mater. Chem. C 2015, 3, 33.
    [102] G. Kim, H. Kim, M. Jang, Y. K. Jung, J. H. Oh, C. Yang, J. Mater. Chem. C 2016, 4, 9554.
    [103] H. J. Cho, S.-J. Kang, S. M. Lee, M. Jeong, G. Kim, Y.-Y. Noh, C. Yang, ACS Appl. Mater. Interfaces 2017, 9, 30755.
    [104] M. R. Raj, Y. Kim, C. E. Park, T. K. An, T. Park, Org. Electron. 2019, 65, 251.
    [105] C. C. Chueh, C. Z. Li, F. Ding, Z. Li, N. Cernetic, X. Li, A. K. Jen, ACS Appl. Mater. Interfaces 2017, 9, 1136.
    [106] A. P. Dhondge, Y.-X. Huang, T. Lin, Y.-H. Hsu, S.-L. Tseng, Y.-C. Chang, H. J. H. Chen, M.-Y. Kuo, J. Org. Chem. 2019, 84, 14061.
    [107] S. Vegiraju, A. A. Amelenan Torimtubun, P.-S. Lin, H.-C. Tsai, W.-C. Lien, C.-S. Chen, G.-Y. He, C.-Y. Lin, D. Zheng, Y.-F. Huang, Y.-C. Wu, S.-L. Yau, G.-H. Lee, S.-H. Tung, C.-L. Wang, C.-L. Liu, M.-C. Chen, A. Facchetti, ACS Appl. Mater. Interfaces 2020, 12, 25081.
    [108] S. Vegiraju, X.-L. Luo, L.-H. Li, S. N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh, C.-C. Lin, S.-H. Hong, H.-C. Tsai, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Chem. Mater. 2020, 32, 1422.
    [109] Z. Liu, G. Zhang, D. Zhang, Acc. Chem. Res. 2018, 51, 1422.
    [110] T. Marszalek, M. Li, W. Pisula, Chem. Commun. 2016, 52, 10938.
    [111] J. Mei, Z. Bao, Chem. Mater. 2013, 26, 604.
    [112] Y. Yang, Z. Liu, G. Zhang, X. Zhang, D. Zhang, Adv. Mater. 2019, 31, 1903104.
    [113] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732.
    [114] H. Iino, T. Usui, J.-i. Hanna, Nat. Commun. 2015, 6, 6828.
    [115] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature 2011, 480, 504.
    [116] Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665.
    [117] G. Giri, S. Park, M. Vosgueritchian, M. M. Shulaker, Z. Bao, Adv. Mater. 2014, 26, 487.
    [118] M. Gsänger, E. Kirchner, M. Stolte, C. Burschka, V. Stepanenko, J. Pflaum, F. Würthner, J. Am. Chem. Soc. 2014, 136, 2351.
    [119] H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, V. Podzorov, Nat. Mater. 2018, 17, 2.
    [120] D. M. Smilgies, J. Appl. Crystallogr. 2009, 42, 1030.
    [121] L. Wang, G. Nan, X. Yang, Q. Peng, Q. Li, Z. Shuai, Chem. Soc. Rev. 2010, 39, 423.
    [122] S. Fratini, S. Ciuchi, D. Mayou, G. T. de Laissardière, A. Troisi, Nat. Mater. 2017, 16, 998.
    [123] Q. Wang, E. J. Juarez-Perez, S. Jiang, M. Xiao, J. Qian, E.-S. Shin, Y.-Y. Noh, Y. Qi, Y. Shi, Y. Li, Phys. Rev. Mater. 2020, 4, 044604.
    [124] Y. Wang, X. Huang, T. Li, L. Li, X. Guo, P. Jiang, Chem. Mater. 2019, 31, 2212.
    [125] M. Fahlman, S. Fabiano, V. Gueskine, D. Simon, M. Berggren, X. Crispin, Nat. Rev. Mater. 2019, 4, 627.
    [126] R. P. Ortiz, A. Facchetti, T. J. Marks, Chem. Rev. 2010, 110, 205.
    [127] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
    [128] D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
    [129] J. Soeda, Y. Hirose, M. Yamagishi, A. Nakao, T. Uemura, K. Nakayama, M. Uno, Y. Nakazawa, K. Takimiya, J. Takeya, Adv. Mater. 2011, 23, 3309.
    [130] G. Kim, S.-J. Kang, G. K. Dutta, Y.-K. Han, T. J. Shin, Y.-Y. Noh, C. Yang, J. Am. Chem. Soc. 2014, 136, 9477.
    [131] J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724.
    [132] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 3005.
    [133] C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C.-a. Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 28, 8456.
    [134] T. Takahashi, K.-i. Matsuoka, K. Takimiya, T. Otsubo, Y. Aso, J. Am. Chem. Soc. 2005, 127, 8928.
    [135] J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater. 2014, 26, 5782.
    [136] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem. Soc. 2012, 134, 4084.
    [137] H. Limpricht, Ber. Dtsch. Chem. Ges. 1870, 3, 90.
    [138] Z. Zhao, H. Nie, C. Ge, Y. Cai, Y. Xiong, J. Qi, W. Wu, R. T. K. Kwok, X. Gao, A. Qin, J. W. Y. Lam, B. Z. Tang, Adv. Sci. 2017, 4, 1700005.
    [139] A. Pachariyangkun, M. Suda, S. Hadsadee, S. Jungsuttiwong, P. Nalaoh, P. Pattanasattayavong, T. Sudyoadsuk, H. M. Yamamoto, V. Promarak, J. Mater. Chem. C 2020, 8, 17297.
    [140] C. Mitsui, J. Soeda, K. Miwa, H. Tsuji, J. Takeya, E. Nakamura, J. Am. Chem. Soc. 2012, 134, 5448.
    [141] Y. Miyata, M. Terayama, T. Minari, T. Nishinaga, T. Nemoto, S. Isoda, K. Komatsu, Chem Asian J. 2007, 2, 1492.
    [142] Y. Xiong, M. Wang, X. Qiao, J. Li, H. Li, Tetrahedron 2015, 71, 852.
    [143] O. Gidron, M. Bendikov, Angew. Chem., Int. Ed. 2014, 53, 2546.
    [144] O. Gidron, Y. Diskin-Posner, M. Bendikov, J. Am. Chem. Soc. 2010, 132, 2148.
    [145] Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, H. Li, Adv. Mater. 2016, 28, 5949.
    [146] G. Barbarella, L. Favaretto, G. Sotgiu, M. Zambianchi, C. Arbizzani, A. Bongini, M. Mastragostino, Chem. Mater. 1999, 11, 2533.
    [147] P. M. Beaujuge, J. M. J. Fréchet, J. Am. Chem. Soc. 2011, 133, 20009.
    [148] M. E. Cinar, T. Ozturk, Chem. Rev. 2015, 115, 3036.
    [149] L. Zhang, L. Tan, Z. Wang, W. Hu, D. Zhu, Chem. Mater. 2009, 21, 1993.
    [150] W. Yi, S. Zhao, H. Sun, Y. Kan, J. Shi, S. Wan, C. Li, H. Wang, J. Mater. Chem. C 2015, 3, 10856.
    [151] Z. Shan, J. Shi, W. Xu, C. Li, H. Wang, Dyes Pigm. 2019, 171, 107675.
    [152] S. Vegiraju, B.-C. Chang, P. Priyanka, D.-Y. Huang, K.-Y. Wu, L.-H. Li, W.-C. Chang, Y.-Y. Lai, S.-H. Hong, B.-C. Yu, C.-L. Wang, W.-J. Chang, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Mater. 2017, 29, 1702414.
    [153] H. Huang, L. Yang, A. Facchetti, T. J. Marks, Chem. Rev. 2017, 117, 10291.
    [154] C.-C. Lin, S. N. Afraj, A. Velusamy, P.-C. Yu, C.-H. Cho, J. Chen, Y.-H. Li, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, ACS Nano 2021, 15, 727.
    [155] H. Wang, J. Huang, M. A. Uddin, B. Liu, P. Chen, S. Shi, Y. Tang, G. Xing, S. Zhang, H. Y. Woo, H. Guo, X. Guo, ACS Appl. Mater. Interfaces 2019, 11, 10089.
    [156] Y. Liu, J. Song, Z. Bo, Chem. Commun. 2021, 57, 302.
    [157] Z. Fei, Y. Han, E. Gann, T. Hodsden, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos, M. Heeney, J. Am. Chem. Soc. 2017, 139, 8552.
    [158] S.-Y. Jang, I.-B. Kim, M. Kang, Z. Fei, E. Jung, T. McCarthy-Ward, J. Shaw, D.-H. Lim, Y.-J. Kim, S. Mathur, M. Heeney, D.-Y. Kim, Adv. Sci. 2019, 6, 1900245.
    [159] M. J. Sung, A. Luzio, W.-T. Park, R. Kim, E. Gann, F. Maddalena, G. Pace, Y. Xu, D. Natali, C. de Falco, L. Dang, C. R. McNeill, M. Caironi, Y.-Y. Noh, Y.-H. Kim, Adv. Funct. Mater. 2016, 26, 4984.
    [160] C. Wang, M. Abbas, G. Wantz, K. Kawabata, K. Takimiya, J. Mater. Chem. C 2020, 8, 15119.
    [161] H. Takenaka, T. Ogaki, C. Wang, K. Kawabata, K. Takimiya, Chem. Mater. 2019, 31, 6696.
    [162] T. Okamoto, M. Mitani, C. P. Yu, C. Mitsui, M. Yamagishi, H. Ishii, G. Watanabe, S. Kumagai, D. Hashizume, S. Tanaka, M. Yano, T. Kushida, H. Sato, K. Sugimoto, T. Kato, J. Takeya, J. Am. Chem. Soc. 2020, 142, 14974.
    [163] S. Vegiraju, A. A. Amelenan Torimtubun, P.-S. Lin, H.-C. Tsai, W.-C. Lien, C.-S. Chen, G.-Y. He, C.-Y. Lin, D. Zheng, Y.-F. Huang, Y.-C. Wu, S.-L. Yau, G.-H. Lee, S.-H. Tung, C.-L. Wang, C.-L. Liu, M.-C. Chen, A. Facchetti, ACS Appl. Mater. Interfaces 2020, 12, 25081.
    [164] P. L. Gamage, C. M. Udamulle Gedara, Z. Ma, A. Bhadran, R. Gunawardhana, C. Bulumulla, M. C. Biewer, M. C. Stefan, ACS Appl. Electron. Mater. 2021, 3, 5335.
    [165] H. Bronstein, C. B. Nielsen, B. C. Schroeder, I. McCulloch, Nat. Rev. Chem. 2020, 4, 66.
    [166] H. Chen, W. Zhang, M. Li, G. He, X. Guo, Chem. Rev. 2020, 120, 2879.
    [167] Z. Lu, C. Wang, W. Deng, M. T. Achille, J. Jie, X. Zhang, J. Mater. Chem. C 2020, 8, 9133.
    [168] S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, H. Sirringhaus, Nat. Mater. 2020, 19, 491.
    [169] Y. Wang, L. Sun, C. Wang, F. Yang, X. Ren, X. Zhang, H. Dong, W. Hu, Chem. Soc. Rev. 2019, 48, 1492.
    [170] Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju, L. Bian, N. Shi, Y. Qian, M. Yi, L. Xie, W. Huang, Adv. Funct. Mater. 2019, 29, 1904602.
    [171] X. Gu, L. Shaw, K. Gu, M. F. Toney, Z. Bao, Nat. Commun. 2018, 9, 534.
    [172] B. Kang, F. Ge, L. Qiu, K. Cho, Adv. Electron. Mater. 2017, 3, 1600240.
    [173] B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T. J. Marks, A. Facchetti, Chem. Rev. 2018, 118, 5690.
    [174] G. Wang, F. S. Melkonyan, A. Facchetti, T. J. Marks, Angew. Chem., Int. Ed. 2019, 58, 4129.
    [175] C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003.
    [176] S. Yuvaraja, A. Nawaz, Q. Liu, D. Dubal, S. G. Surya, K. N. Salama, P. Sonar, Chem. Soc. Rev. 2020, 49, 3423.
    [177] Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, J. H. Oh, Chem 2017, 3, 724.
    [178] K. Takimiya, S. Shinamura, I. Osaka, E. Miyazaki, Adv. Mater. 2011, 23, 4347.
    [179] Y. Pan, G. Yu, Chem. Mater. 2021, 33, 2229.
    [180] D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, J. E. Anthony, Nat. Mater. 2008, 7, 216.
    [181] Q. Miao, M. Lefenfeld, T.-Q. Nguyen, T. Siegrist, C. Kloc, C. Nuckolls, Adv. Mater. 2005, 17, 407.
    [182] K. Ito, T. Suzuki, Y. Sakamoto, D. Kubota, Y. Inoue, F. Sato, S. Tokito, Angew. Chem., Int. Ed. 2003, 42, 1159.
    [183] T.-H. Chao, M.-J. Chang, M. Watanabe, M.-H. Luo, Y. J. Chang, T.-C. Fang, K.-Y. Chen, T. J. Chow, Chem. Commun. 2012, 48, 6148.
    [184] S. Vegiraju, D.-Y. Huang, P. Priyanka, Y.-S. Li, X.-L. Luo, S.-H. Hong, J.-S. Ni, S.-H. Tung, C.-L. Wang, W.-C. Lien, S. L. Yau, C.-L. Liu, M.-C. Chen, Chem. Commun. 2017, 53, 5898.
    [185] L. Wang, J. Dai, Y. Song, Int. J. Quantum Chem. 2019, 119, e25824.
    [186] C. Kim, P.-Y. Huang, J.-W. Jhuang, M.-C. Chen, J.-C. Ho, T.-S. Hu, J.-Y. Yan, L.-H. Chen, G.-H. Lee, A. Facchetti, T. J. Marks, Org. Electron. 2010, 11, 1363.
    [187] J. Youn, P.-Y. Huang, Y.-W. Huang, M.-C. Chen, Y.-J. Lin, H. Huang, R. P. Ortiz, C. Stern, M.-C. Chung, C.-Y. Feng, L.-H. Chen, A. Facchetti, T. J. Marks, Adv. Funct. Mater. 2012, 22, 48.
    [188] J. Youn, S. Vegiraju, J. D. Emery, B. J. Leever, S. Kewalramani, S. J. Lou, S. Zhang, K. Prabakaran, Y. Ezhumalai, C. Kim, P.-Y. Huang, C. Stern, W.-C. Chang, M. J. Bedzyk, L. X. Chen, M.-C. Chen, A. Facchetti, T. J. Marks, Adv. Electron. Mater. 2015, 1, 1500098.
    [189] C. Zhang, X. Zhu, Adv. Funct. Mater. 2020, 30, 2000765.
    [190] Y. Sun, Y. Guo, Y. Liu, Mater. Sci. Eng. R Rep. 2019, 136, 13.
    [191] Z. Xue, S. Chen, N. Gao, Y. Xue, B. Lu, O. A. Watson, L. Zang, J. Xu, Polym. Rev. 2020, 60, 318.
    [192] S. N. Afraj, G.-Y. He, C.-Y. Lin, A. Velusamy, C.-Y. Huang, P.-S. Lin, S. Vegiraju, P.-Y. Huang, J.-S. Ni, S.-L. Yau, S.-H. Tung, T. Minari, C.-L. Liu, M.-C. Chen, Adv. Mater. Technol. 2021, 6, 2001028.
    [193] M.-C. Chen, S. Vegiraju, C.-M. Huang, P.-Y. Huang, K. Prabakaran, S. L. Yau, W.-C. Chen, W.-T. Peng, I. Chao, C. Kim, Y.-T. Tao, J. Mater. Chem. C 2014, 2, 8892.
    [194] N. C. Mamillapalli, S. Vegiraju, P. Priyanka, C.-Y. Lin, X.-L. Luo, H.-C. Tsai, S.-H. Hong, J.-S. Ni, W.-C. Lien, G. Kwon, S. L. Yau, C. Kim, C.-L. Liu, M.-C. Chen, Dyes Pigm. 2017, 145, 584.
    [195] K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res. 2014, 47, 1493.
    [196] K. Xiao, Y. Liu, T. Qi, W. Zhang, F. Wang, J. Gao, W. Qiu, Y. Ma, G. Cui, S. Chen, X. Zhan, G. Yu, J. Qin, W. Hu, D. Zhu, J. Am. Chem. Soc. 2005, 127, 13281.
    [197] X.-C. Li, H. Sirringhaus, F. Garnier, A. B. Holmes, S. C. Moratti, N. Feeder, W. Clegg, S. J. Teat, R. H. Friend, J. Am. Chem. Soc. 1998, 120, 2206.
    [198] Y. Liu, Y. Wang, W. Wu, Y. Liu, H. Xi, L. Wang, W. Qiu, K. Lu, C. Du, G. Yu, Adv. Funct. Mater. 2009, 19, 772.
    [199] Y. Liu, C.-a. Di, C. Du, Y. Liu, K. Lu, W. Qiu, G. Yu, Chem. Eur. J. 2010, 16, 2231.
    [200] Y. M. Sun, Y. Q. Ma, Y. Q. Liu, Y. Y. Lin, Z. Y. Wang, Y. Wang, C. A. Di, K. Xiao, X. M. Chen, W. F. Qiu, B. Zhang, G. Yu, W. P. Hu, D. B. Zhu, Adv. Funct. Mater. 2006, 16, 426.
    [201] M.-C. Chen, Y.-J. Chiang, C. Kim, Y.-J. Guo, S.-Y. Chen, Y.-J. Liang, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T. J. Marks, Chem. Commun. 2009, 1846.
    [202] C. Kim, M.-C. Chen, Y.-J. Chiang, Y.-J. Guo, J. Youn, H. Huang, Y.-J. Liang, Y.-J. Lin, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T. J. Marks, Org. Electron. 2010, 11, 801.
    [203] H. Usta, D. Kim, R. Ozdemir, Y. Zorlu, S. Kim, M. C. Ruiz Delgado, A. Harbuzaru, S. Kim, G. Demirel, J. Hong, Y.-G. Ha, K. Cho, A. Facchetti, M.-G. Kim, Chem. Mater. 2019, 31, 5254.
    [204] M.-C. Chen, C. Kim, S.-Y. Chen, Y.-J. Chiang, M.-C. Chung, A. Facchetti, T. J. Marks, J. Mater. Chem. 2008, 18, 1029.
    [205] T. J. Marks, MRS Bull. 2010, 35, 1018.
    [206] H. Usta, C. Risko, Z. Wang, H. Huang, M. K. Deliomeroglu, A. Zhukhovitskiy, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2009, 131, 5586.
    [207] S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2017, 27, 1606761.
    [208] A. Velusamy, C.-H. Yu, S. N. Afraj, C.-C. Lin, W.-Y. Lo, C.-J. Yeh, Y.-W. Wu, H.-C. Hsieh, J. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Sci. 2021, 8, 2002930.
    [209] Y. Yang, Z. Liu, G. Zhang, X. Zhang, D. Zhang, Adv. Mater. 2019, 31, 1903104.
    [210] N. Zhou, S. Vegiraju, X. Yu, E. F. Manley, M. R. Butler, M. J. Leonardi, P. Guo, W. Zhao, Y. Hu, K. Prabakaran, R. P. H. Chang, M. A. Ratner, L. X. Chen, A. Facchetti, M.-C. Chen, T. J. Marks, J. Mater. Chem. C 2015, 3, 8932.
    [211] S. Vegiraju, X.-L. Luo, L.-H. Li, S. N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh, C.-C. Lin, S.-H. Hong, H.-C. Tsai, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Chem. Mater. 2020, 32, 1422.
    [212] T. Dong, L. Lv, L. Feng, Y. Xia, W. Deng, P. Ye, B. Yang, S. Ding, A. Facchetti, H. Dong, H. Huang, Adv. Mater. 2017, 29, 1606025.
    [213] V. Joseph, C.-H. Yu, C.-C. Lin, W.-C. Lien, H.-C. Tsai, C.-S. Chen, A. A. A. Torimtubun, A. Velusamy, P.-Y. Huang, G.-H. Lee, S.-L. Yau, S.-H. Tung, T. Minari, C.-L. Liu, M.-C. Chen, J. Mater. Chem. C 2020, 8, 15450.
    [214] J. A. Letizia, A. Facchetti, C. L. Stern, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 13476.
    [215] M.-H. Yoon, S. A. DiBenedetto, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 1348.
    [216] M.-H. Yoon, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 12851.
    [217] S. J. Cho, M. J. Kim, Z. Wu, J. H. Son, S. Y. Jeong, S. Lee, J. H. Cho, H. Y. Woo, ACS Appl. Mater. Interfaces 2020, 12, 41842.
    [218] J. Youn, M.-C. Chen, Y.-j. Liang, H. Huang, R. P. Ortiz, C. Kim, C. Stern, T.-S. Hu, L.-H. Chen, J.-Y. Yan, A. Facchetti, T. J. Marks, Chem. Mater. 2010, 22, 5031.
    [219] X. Gong, C. Zheng, X. Feng, Y. Huan, J. Li, M. Yi, Z. Fu, W. Huang, D. Gao, Chem. Asian J. 2018, 13, 3920.
    [220] S. Vegiraju, C.-Y. Lin, P. Priyanka, D.-Y. Huang, X.-L. Luo, H.-C. Tsai, S.-H. Hong, C.-J. Yeh, W.-C. Lien, C.-L. Wang, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2018, 28, 1801025.
    [221] T.-Y. Lai, C.-Y. Cheng, W.-Y. Cheng, K.-M. Lee, S.-H. Tung, Macromolecules 2015, 48, 717.
    [222] J. Rivnay, S. C. B. Mannsfeld, C. E. Miller, A. Salleo, M. F. Toney, Chem. Rev. 2012, 112, 5488.
    [223] L. Fu, H. Li, L. Wang, R. Yin, B. Li, L. Yin, Energy Environ. Sci. 2020, 13, 4017.
    [224] M. Zhang, X. Zhan, Adv. Energy Mater. 2019, 9, 1900860.
    [225] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    [226] J. S. Manser, J. A. Christians, P. V. Kamat, Chem. Rev. 2016, 116, 12956.
    [227] Y. Guo, J. Ma, H. Lei, F. Yao, B. Li, L. Xiong, G. Fang, J. Mater. Chem. A 2018, 6, 5919.
    [228] B. Yu, L. Zhang, J. Wu, K. Liu, H. Wu, J. Shi, Y. Luo, D. Li, Z. Bo, Q. Meng, J. Mater. Chem. A 2020, 8, 1417.
    [229] Y. Miyazawa, M. Ikegami, H.-W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, iScience 2018, 2, 148.
    [230] W. Ke, P. Priyanka, S. Vegiraju, C. C. Stoumpos, I. Spanopoulos, C. M. M. Soe, T. J. Marks, M.-C. Chen, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 388.
    [231] S. Vegiraju, W. Ke, P. Priyanka, J.-S. Ni, Y.-C. Wu, I. Spanopoulos, S. L. Yau, T. J. Marks, M.-C. Chen, M. G. Kanatzidis, Adv. Funct. Mater. 2019, 29, 1905393.
    [232] A. A. Sutanto, V. Joseph, C. Igci, O. A. Syzgantseva, M. A. Syzgantseva, V. Jankauskas, K. Rakstys, V. I. E. Queloz, P.-Y. Huang, J.-S. Ni, S. Kinge, A. M. Asiri, M.-C. Chen, M. K. Nazeeruddin, Chem. Mater. 2021, 33, 3286.
    [233] V. Joseph, A. A. Sutanto, C. Igci, O. A. Syzgantseva, V. Jankauskas, K. Rakstys, V. I. E. Queloz, H. Kanda, P.-Y. Huang, J.-S. Ni, S. Kinge, M.-C. Chen, M. K. Nazeeruddin, Small n/a, 2100783.
    [234] V. Govindan, K.-C. Yang, Y.-S. Fu, C.-G. Wu, New J. Chem. 2018, 42, 7332.
    [235] Y. Yang, J. You, Nature 2017, 544, 155.
    [236] H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, J. Huang, Nat. Photonics 2016, 10, 333.
    [237] J. Huang, Y. Shao, Q. Dong, J. Phys. Chem. Lett. 2015, 6, 3218.
    [238] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, O. M. Bakr, Nat. Commun. 2015, 6, 7586.
    [239] K. Suding, E. Higgs, M. Palmer, J. B. Callicott, C. B. Anderson, M. Baker, J. J. Gutrich, K. L. Hondula, M. C. LaFevor, B. M. H. Larson, A. Randall, J. B. Ruhl, K. Z. S. Schwartz, Science 2015, 348, 638.
    [240] J. S. Yun, A. Ho-Baillie, S. Huang, S. H. Woo, Y. Heo, J. Seidel, F. Huang, Y.-B. Cheng, M. A. Green, J. Phys. Chem. Lett. 2015, 6, 875.
    [241] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 2014, 5, 5784.
    [242] Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, J. Huang, Energy Environ. Sci. 2016, 9, 1752.
    [243] Y. Li, H. Wu, W. Qi, X. Zhou, J. Li, J. Cheng, Y. Zhao, Y. Li, X. Zhang, Nano Energy 2020, 77, 105237.
    [244] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, ACS Nano 2014, 8, 9815.
    [245] Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, W. Ma, X. C. Zeng, X. Zhan, J. Huang, Adv. Mater. 2017, 29, 1604545.
    [246] S. Lee, J. H. Park, B. R. Lee, E. D. Jung, J. C. Yu, D. Di Nuzzo, R. H. Friend, M. H. Song, J. Phys. Chem. Lett. 2017, 8, 1784.
    [247] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, Xiao C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
    [248] C. Bi, X. Zheng, B. Chen, H. Wei, J. Huang, ACS Energy Lett. 2017, 2, 1400.
    [249] L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun, C.-H. Yan, Science 2019, 363, 265.
    [250] E. A. Alharbi, A. Y. Alyamani, D. J. Kubicki, A. R. Uhl, B. J. Walder, A. Q. Alanazi, J. Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M. H. Alotaibi, J.-E. Moser, S. M. Zakeeruddin, F. Giordano, L. Emsley, M. Grätzel, Nat. Commun. 2019, 10, 3008.
    [251] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511.
    [252] N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Nat. Energy 2019, 4, 408.
    [253] H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang, S. Yuan, Z. Yang, Z. Liu, S. Liu, Adv. Energy Mater. 2019, 9, 1902279.
    [254] S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, J. Am. Chem. Soc. 2017, 139, 7504.
    [255] B. Wang, F. Wu, S. Bi, J. Zhou, J. Wang, X. Leng, D. Zhang, R. Meng, B. Xue, C. Zong, L. Zhu, Y. Zhang, H. Zhou, J. Mater. Chem. A 2019, 7, 23895.
    [256] P.-W. Liang, C.-C. Chueh, S. T. Williams, A. K.-Y. Jen, Adv. Energy Mater. 2015, 5, 1402321.
    [257] Z. Yang, J. Dou, S. Kou, J. Dang, Y. Ji, G. Yang, W.-Q. Wu, D.-B. Kuang, M. Wang, Adv. Funct. Mater. 2020, 30, 1910710.
    [258] G. H. Ahmed, J. Yin, R. Bose, L. Sinatra, E. Alarousu, E. Yengel, N. M. AlYami, M. I. Saidaminov, Y. Zhang, M. N. Hedhili, O. M. Bakr, J.-L. Brédas, O. F. Mohammed, Chem. Mater. 2017, 29, 4393.
    [259] M. Zhang, S. Dai, S. Chandrabose, K. Chen, K. Liu, M. Qin, X. Lu, J. M. Hodgkiss, H. Zhou, X. Zhan, J. Am. Chem. Soc. 2018, 140, 14938.
    [260] C. Song, X. Li, Y. Wang, S. Fu, L. Wan, S. Liu, W. Zhang, W. Song, J. Fang, J. Mater. Chem. A 2019, 7, 19881.
    [261] Y. Gao, Y. Wu, Y. Liu, M. Lu, L. Yang, Y. Wang, W. W. Yu, X. Bai, Y. Zhang, Q. Dai, Nanoscale Horiz. 2020, 5, 1574.
    [262] M. Qin, J. Cao, T. Zhang, J. Mai, T.-K. Lau, S. Zhou, Y. Zhou, J. Wang, Y.-J. Hsu, N. Zhao, J. Xu, X. Zhan, X. Lu, Adv. Energy Mater. 2018, 8, 1703399.
    [263] T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, Adv. Mater. 2018, 30, 1706576.
    [264] G. Yang, P. Qin, G. Fang, G. Li, Sol. RRL 2018, 2, 1800055.
    [265] F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Adv. Mater. 2017, 29, 1700144.
    [266] T. L. Nguyen, H. Choi, S. J. Ko, M. A. Uddin, B. Walker, S. Yum, J. E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, H. Y. Woo, Energy Environ. Sci. 2014, 7, 3040.
    [267] D. Deng, Y. Zhang, J. Zhang, Z. Wang, L. Zhu, J. Fang, B. Xia, Z. Wang, K. Lu, W. Ma, Z. Wei, Nat. Commun. 2016, 7, 13740.
    [268] Y. Cui, C. Yang, H. Yao, J. Zhu, Y. Wang, G. Jia, F. Gao, J. Hou, Adv. Mater. 2017, 29, 1703080.
    [269] S. Dey, Small 2019, 15, 1900134.
    [270] K. Wang, J. Liu, J. Yin, E. Aydin, G. T. Harrison, W. Liu, S. Chen, O. F. Mohammed, S. De Wolf, Adv. Funct. Mater. 2020, 30, 2002861.
    [271] C.-H. Chiang, C.-G. Wu, Nat. Photonics 2016, 10, 196.
    [272] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519.
    [273] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo, J. M. Luther, C.-Q. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M. K. Nazeeruddin, A. F. Nogueira, Ç. Odabaşı, A. Osherov, N.-G. Park, M. O. Reese, F. De Rossi, M. Saliba, U. S. Schubert, H. J. Snaith, S. D. Stranks, W. Tress, P. A. Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R. Yıldırım, S. M. Zakeeruddin, K. Zhu, M. Lira-Cantu, Nat. Energy 2020, 5, 35.
    [274] F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong, M. A. Loi, L.-M. Liu, N. Zhao, Adv. Mater. 2016, 28, 9986.
    [275] J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva, M. E. Liao, S.-Y. Chang, L. Meng, D. Meng, P. Sun, O. Lin, M. S. Goorsky, Y. Yang, Joule 2018, 2, 1866.
    [276] T.-H. Lee, K.-Y. Wu, T.-Y. Lin, J.-S. Wu, C.-L. Wang, C.-S. Hsu, Macromolecules 2013, 46, 7687.
    [277] X. Huang, M. Hu, X. Zhao, C. Li, Z. Yuan, X. Liu, C. Cai, Y. Zhang, Y. Hu, Y. Chen, Org. Lett. 2019, 21, 3382.
    [278] B. O'Regan, M. Grätzel, Nature 1991, 353, 737.
    [279] M. Grätzel, J. Photochem. Photobiol., C 2003, 4, 145.
    [280] R. Milan, G. S. Selopal, M. Epifani, M. M. Natile, G. Sberveglieri, A. Vomiero, I. Concina, Sci. Rep. 2015, 5, 14523.
    [281] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
    [282] A. Sen, A. Groß, ACS Appl. Energy Mater. 2019, 2, 6341.
    [283] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242.
    [284] Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim, H. K. Kim, J. Mater. Chem. A 2017, 5, 2297.
    [285] T. Stergiopoulos, P. Falaras, Adv. Energy Mater. 2012, 2, 616.
    [286] H. J. Snaith, Adv. Funct. Mater. 2010, 20, 13.
    [287] M. J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G. G. Wallace, D. L. Officer, A. Furube, R. Katoh, S. Mori, A. J. Mozer, Chem. Commun. 2012, 48, 4145.
    [288] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem., Int. Ed. 2009, 48, 2474.
    [289] C. Li, H. Wonneberger, Adv. Mater. 2012, 24, 613.
    [290] M. Liang, J. Chen, Chem. Soc. Rev. 2013, 42, 3453.
    [291] L. Zhang, X. Yang, W. Wang, G. G. Gurzadyan, J. Li, X. Li, J. An, Z. Yu, H. Wang, B. Cai, A. Hagfeldt, L. Sun, ACS Energy Lett. 2019, 4, 943.
    [292] E. Tanaka, H. Michaels, M. Freitag, N. Robertson, J. Mater. Chem. A 2020, 8, 1279.
    [293] F.-S. Lin, P. Priyanka, M.-S. Fan, S. Vegiraju, J.-S. Ni, Y.-C. Wu, Y.-H. Li, G.-H. Lee, Y. Ezhumalai, R.-J. Jeng, M.-C. Chen, K.-C. Ho, J. Mater. Chem. C 2020, 8, 15322.
    [294] Y. Ezhumalai, F.-S. Lin, M.-S. Fan, K. Prabakaran, J.-S. Ni, Y.-C. Wu, G.-H. Lee, M.-C. Chen, K.-C. Ho, ACS Appl. Mater. Interfaces 2020, 12, 15071.
    [295] Y. Ezhumalai, B. Lee, M.-S. Fan, B. Harutyunyan, K. Prabakaran, C.-P. Lee, S. H. Chang, J.-S. Ni, S. Vegiraju, P. Priyanka, Y.-W. Wu, C.-W. Liu, S. Yau, J. T. Lin, C.-G. Wu, M. J. Bedzyk, R. P. H. Chang, M.-C. Chen, K.-C. Ho, T. J. Marks, J. Mater. Chem. A 2017, 5, 12310.
    [296] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Chem. Commun. 2015, 51, 15894.
    [297] Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, J. Am. Chem. Soc. 2015, 137, 3799.
    [298] J.-M. Ji, S. H. Kim, H. Zhou, C. H. Kim, H. K. Kim, ACS Appl. Mater. Interfaces 2019, 11, 24067.
    [299] X. Zhang, Y. Xu, F. Giordano, M. Schreier, N. Pellet, Y. Hu, C. Yi, N. Robertson, J. Hua, S. M. Zakeeruddin, H. Tian, M. Grätzel, J. Am. Chem. Soc. 2016, 138, 10742.
    [300] H. Cheema, J. Watson, A. Peddapuram, J. H. Delcamp, Chem. Commun. 2020, 56, 1741.
    [301] J.-S. Ni, J.-H. You, W.-I. Hung, W.-S. Kao, H.-H. Chou, J. T. Lin, ACS Appl. Mater. Interfaces 2014, 6, 22612.
    [302] N. Zhou, K. Prabakaran, B. Lee, S. H. Chang, B. Harutyunyan, P. Guo, M. R. Butler, A. Timalsina, M. J. Bedzyk, M. A. Ratner, S. Vegiraju, S. Yau, C.-G. Wu, R. P. H. Chang, A. Facchetti, M.-C. Chen, T. J. Marks, J. Am. Chem. Soc. 2015, 137, 4414.
    [303] A. F. Buene, E. E. Ose, A. G. Zakariassen, A. Hagfeldt, B. H. Hoff, J. Mater. Chem. A 2019, 7, 7581.
    [304] R. B. K. Siram, K. Tandy, M. Horecha, P. Formanek, M. Stamm, S. Gevorgyan, F. C. Krebs, A. Kiriy, P. Meredith, P. L. Burn, E. B. Namdas, S. Patil, J. Phys. Chem. C 2011, 115, 14369.
    [305] A. Facchetti, M.-H. Yoon, H. E. Katz, M. Mushrush, T. J. Marks, MRS Online Proc. Libr. 2003, 769, 118128.
    [306] J. A. Letizia, M. R. Salata, C. M. Tribout, A. Facchetti, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2008, 130, 9679.
    [307] N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 2016, 1, 16152.
    [308] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, H. Han, Science 2018, 361, eaat8235.
    [309] X. Jiang, D. Wang, Z. Yu, W. Ma, H.-B. Li, X. Yang, F. Liu, A. Hagfeldt, L. Sun, Adv. Energy Mater. 2019, 9, 1803287.
    [310] W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Z.-B. He, Adv. Energy Mater. 2018, 8, 1703519.
    [311] D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu, Science 2018, 360, 1442.
    [312] H. D. Pham, L. Gil-Escrig, K. Feron, S. Manzhos, S. Albrecht, H. J. Bolink, P. Sonar, J. Mater. Chem. A 2019, 7, 12507.
    [313] R. Shang, Z. Zhou, H. Nishioka, H. Halim, S. Furukawa, I. Takei, N. Ninomiya, E. Nakamura, J. Am. Chem. Soc. 2018, 140, 5018.
    [314] C. Rodríguez-Seco, L. Cabau, A. Vidal-Ferran, E. Palomares, Acc. Chem. Res. 2018, 51, 869.
    [315] Y. Wang, W. Chen, L. Wang, B. Tu, T. Chen, B. Liu, K. Yang, C. W. Koh, X. Zhang, H. Sun, G. Chen, X. Feng, H. Y. Woo, A. B. Djurišić, Z. He, X. Guo, Adv. Mater. 2019, 31, 1902781.
    [316] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
    [317] J. Cao, Y.-M. Liu, X. Jing, J. Yin, J. Li, B. Xu, Y.-Z. Tan, N. Zheng, J. Am. Chem. Soc. 2015, 137, 10914.
    [318] Z. Chen, S. D. Boyd, J. S. Calvo, K. W. Murray, G. L. Mejia, C. E. Benjamin, R. P. Welch, D. D. Winkler, G. Meloni, S. D’Arcy, J. J. Gassensmith, Bioconjugate Chem. 2017, 28, 2277.

    QR CODE
    :::