跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃瑞琳
Ruei-lin Huang
論文名稱: 多激發光波長與溫度效應之螢光粉光學模型之研究
Study of Phosphor Modeling with Multiple Pumping Wavelengths and Thermal Effect
指導教授: 孫慶成
Ching-cherng Sun
楊宗勳
Tsung-hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 吸收係數轉換係數螢光粉模型溫度
外文關鍵詞: Absorption coefficient, Conversion coefficient, Phosphor Model, Temperature
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為建置多激發波長與溫度效應之螢光粉光學模型,並可預測LEDs在不同溫度下的色座標點飄移。首先我們由螢光粉模型中的吸收係數與轉換係數著手,並找尋相對應LEDs不同激發波長間的吸收與轉換係數。在吸收係數的部份,使用自行定義的吸收能力以對應不同激發波長之吸收係數,而在轉換係數的部份,使用自行定義的激發能力以對應不同激發波長之轉換係數。之後,在考量溫度效應下,LEDs激發波長的偏移,使得螢光粉之吸收與轉換係數的改變,造成LEDs光色表現改變。最後,透過比較模擬與實驗來驗證多激發波長與溫度效應之螢光粉光學模型。


    In this thesis, we build up the phosphor optical model with multiple pumping wavelengths and thermal effect. This model can predict the shift of the color coordinate at different temperatures. We make the thermal prediction by changing the absorption coefficients and conversion coefficients. Accordingly, we have to find the relationship of absorption coefficient between different wavelengths first by defining the ability of absorption to link. Secondly, the conversion coefficients also need to find the relationship between different wavelengths. Hence, we use the ability of excitation to calculate the conversion coefficients between different wavelengths. However, with the thermal effect in turning on LEDs, the output flux decay of the yellow light must be added. Finally, we can change the absorption coefficients and conversion coefficients to predict the shift of the color coordinate. Last but not the least, we will compare the experiment with the simulation to verify the method.

    摘要 i Abstract ii 致謝 iii 目次 iv 圖次 vii 表次 xii 第一章 緒論 1 1.1 前言 1 1.2 LED發展背景 1 1.3 研究動機與目的 4 1.4 論文大綱 6 第二章 基本理論 7 2.1 前言 7 2.2 螢光粉發光原理 7 2.3 螢光粉的吸收頻譜、激發頻譜和輻射頻譜 10 2.4 螢光粉之吸收係數與轉換係數 11 2.5 CIE色度系統 12 第三章 多激發波長螢光粉光學模型建置與驗證 14 3.1 前言 14 3.2 螢光粉的吸收係數與吸收能力 15 3.3 螢光粉的轉換係數 22 3.4 多激發波長之螢光粉光學模型驗證 25 第四章 具有溫度效應之螢光粉光學模型建立驗證 30 4.1 前言 30 4.2 熱效應之螢光粉吸收係數 31 4.3 熱效應之螢光粉轉換係數 37 4.4 熱效應之實驗模擬比較 44 第五章 結論 64 參考文獻 66 中英名詞對照表 72

    [1] M. Liu, B. Rong, and H. W. Salemink, “Evaluation of LED application in general lighting,” Opt. Eng. 46, 1-6 (2007).
    [2] H. J. Round, “A note on carborundum,” Electrical world 49, 309 (1907).
    [3] G. Destriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chem. Phys. 33, 587 (1936).
    [4] N. Holonyak Jr, and S. Bevacqua, “Coherent (visible) light emission from Ga (As1− xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [5] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [6] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390-2392 (1993).
    [7] S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69, 4056-4058 (1996).
    [8] T. Moriguchi, Y. Noguchi, K. Sakano, and Y. Shimizu, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [9] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel.Top. Quantum Electron. 8, 310-320 (2002).
    [10] J. Y. Tsao, “Solid-state lighting: lamps, chips, and materials for tomorrow,” IEEE Circuits Devices Mag. 20, 28-37 (2004).
    [11] A. Zukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
    [12] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
    [13] W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162-166 (2011).
    [14] R. Mueller‐Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all‐nitride phosphor‐converted white light emitting diode,” Phys. Stat. Sol. 202, 1727-1732 (2005).
    [15] C. C. Yang, C. M. Lin, Y. J. Chen, Y. T. Wu, S. R. Chuang, R. S. Liu, and S. F. Hu, “Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy) nitride green/red phosphors,” Appl. Phys. Lett. 90, 123501 (2007).
    [16] T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
    [17] W. Park, Y. Song, and D. Yoon, “Synthesis and luminescent characteristics of Ca2-xSrxSiO4: Eu2+ as a potential green-emitting phosphor for near UV-white LED applications,” Mater. Sci. Eng. 173, 76-79 (2010).
    [18] Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, L838 (1996).
    [19] J. Yu, C. Guo, Z. Ren, and J. Bai, “Photoluminescence of double-color-emitting phosphor Ca5(PO4)3Cl:Eu2+, Mn2+ for near-UV LED,” Opt. Laser Technol 43, 762-766 (2011).
    [20] Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular CCT uniformity of phosphor converted white LEDs: Effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137-139 (2011).
    [21] S. C. Allen, and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett. 92, 143309 (2008).
    [22] M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C. H. Liu, J. C. Chen, and C. C. Sun, “Ring remote phosphor structure for phosphor-converted white LEDs,” IEEE Photon. Technol. Lett. 22, 574-576 (2010).
    [23] Z. Liu, K. Wang, X. Luo, and S. Liu, “Realization of high spatial color uniformity for white light-emitting diodes by remote hemispherical YAG: Ce phosphor film,” Electronic Components and Technology Conference, 1703-1707 (2010).
    [24] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
    [25] N. Narendran, Y. Gu, J. Freyssinier‐Nova, and Y. Zhu, “Extracting phosphor‐scattered photons to improve white LED efficiency,” Phys. Stat. Sol. 202, 60-62 (2005).
    [26] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for Ultra High Brightness LED Package,” Proc. SPIE 6198, 61980 (2006).
    [27] B. Wu, X. Luo, H. Zheng, and S. Liu, “Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode,” Opt. Express 19, 24115-24121 (2011).
    [28] B. Hou, H. Rao, and J. Li, “Methods of increasing luminous efficiency of phosphor-converted LED realized by conformal phosphor coating,” J. Display Technol. 5, 57-60 (2009).
    [29] H. T. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Opt. Express 18, A201-A206 (2010).
    [30] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    [31] 何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
    [32] 陳靜儀,白光LED之螢光粉多功能模型之研究,國立中央大學光電所博士論文,中華民國一百零二年。
    [33] C.-C. Sun, C.-Y. Chen, H.-Y. He, C.-C. Chen, W.-T. Chien, T.-X. Lee, and T.-H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
    [34] 紀葦世,高效能YAG螢光粉之特性量測與模型,源至大學光電工程研究所碩士論文,中華民國九十九年。
    [35] 郭冠廷,不同激發光螢光粉模型之分析,國立中央大學光電碩士論文,中華民國一百零一年。
    [36] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電所碩士論文,中華民國九十七年。
    [37] A. Zukauskas, M. Shur, and R. Gaska, Introduction to solid-state lighting (J. Wiley & Sons,New York, 2002).
    [38] 劉如熹,控制LED用螢光粉品質之要素,2012 LED固態照明研討會論文集,國立中央大學,中壢市,中華民國一百零一年。
    [39] 劉如熹、王建源,白光發光二極體至作技術-21世紀人類的新曙光,全華科技圖書公司,台北縣,中華民國九十四年。
    [40] E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).
    [41] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。
    [42] M. Kerker, H. Chew, P. McNulty, J. Kratohvil, D. Cooke, M. Sculley, and M. Lee, “Light scattering and fluorescence by small particles having internal structure,” Journal of Histochemistry and Cytochemistry 27, 250-263 (1979).
    [43] C. C. Chang, R. L. Chern, C. C. Chang, C. C. Chu, J. Y. Chi, J. C. Su, I. M. Chan, and J. F. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
    [44] Q. Fu, and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
    [45] I. W. Sudiarta, and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
    [46] Á. Borbély, and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308-111308-111304 (2005).
    [47] 大田登,色彩工程學,二版,全華科技圖書公司,台北市,中華民國九十五年。
    [48] J. Guild, “The colorimetric properties of the spectrum,” Philos. R. Soc. London 230, 149-187 (1932).
    [49] G. Wyszecki, and W. S. Stiles, Color science (J. Wiley & Sons,New York, 1982).
    [50] 劉瑋瑋,白光LED之螢光粉熱衰探討,國立中央大學光電所碩士論文,中華民國一百年。

    QR CODE
    :::