| 研究生: |
鐘晉毅 Chin-Yi Chung |
|---|---|
| 論文名稱: |
結合以氧化應激誘發癌細胞表現損傷相關分子與過濾擠壓法來生產癌細胞衍生奈米囊泡以製作治療性癌症疫苗 Therapeutic cancer vaccine made of cancer cell-derived nanovesicles produced by oxidative stress-induced expression of damage-associated molecular pattern and filter extrusion |
| 指導教授: | 陳賜原 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 奈米囊泡 、損傷相關分子模式 、低溫氣壓式電漿 、光動力療法 、過濾擠壓法 |
| 外文關鍵詞: | Nanovesicle, Damage-associated molecular patterns, Cold atmospheric plasma jet, Photodynamic therapy, Filter extrusion |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於使用光動力療法(PDT)製備的癌症疫苗在動物實驗模型中,已被證實是治療癌症更有效的方法相較於其他癌細胞所衍生的癌症疫苗。似乎是由於光動力療法處理後的癌細胞產生高表現的熱休克蛋白70(HSP70)或其他與氧化應激誘導的損傷相關分子模式(DAMPs),藉此所衍生的細胞膜奈米囊泡和細胞碎片使其效果更佳。為了開發出更具有治療潛力的癌症疫苗,從此實驗做延伸,我們使用不同氧化應激處理的方法去製備癌症疫苗,包括光動力療法使用標靶細胞不同位置的光敏藥劑、外加入H2O2應激處理和使用低溫氣壓式電漿(CAP)流應激處理。此外,我們將氧化應激處理後的癌細胞,使用過濾擠壓法(Filter Extrusion)產生奈米囊泡來製備癌症疫苗。藉由檢測癌症疫苗激活巨噬細胞產生一氧化氮(NO)濃度的測試、癌症疫苗激活的巨噬細胞與癌細胞共培養的毒殺測試。發現使用過濾擠壓法所產生的奈米囊泡通常比細胞自發性釋放的奈米囊泡更有效果。此外,與其他氧化應激源相比,使用低溫氣壓式電漿流處理所產生的疫苗是最有效的。結合低溫氣壓式電漿流處理以及過濾擠壓法所製備的癌症疫苗最具有治療癌症的潛力。
Photodynamic therapy (PDT)-based cancer vaccine has been shown to be a more effective modality for treating cancer in animal models compared to other methods used to generate therapeutic cancer cell-derived vaccines. The higher efficacy seems to result from the generation of cell membrane nanovesicles or fragments that carry both cancer cell-specific antigens and a high surface content of HSP70 or other damage-associated molecular pattern molecules induced by oxidative stress. Aiming to develop more effective cancer vaccine along this direction, we explored cancer vaccines generated using different sources of oxidative stress, including photosensitizers that target different parts of the cells, externally added H2O2, and cold atmospheric plasma (CAP) jet. Furthermore, we explored cancer vaccines generated by using filter extrusion to produce nanovesicles from cancer cells after oxidative stress treatment. Through the tests of activating macrophages to secret NO, killing of cancer cells by co-cultured macrophages primed by the vaccines, and animal test, it is found that the vaccine based on nanovesicles generated by filter extrusion was generally more effective than that by spontaneous release of nanovesicles. In addition, the vaccine generated by using CAP jet treatment was the most effective compared to other sources of oxidative stress. The combination of CAP jet treatment and filter extrusion resulted in a vaccine that could lead to a total regression of the tumor in the mouse model, promising for human test.
[1] Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8. Published 2018 Jan 23. doi:10.1186/s40425-018-0316-z
[2] Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531-2544
[3] Onea AS1, Jazirehi AR1. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas
[4] Korbelik, M. Cancer vaccines generated by photodynamic therapy. PHOTOCHEMICAL @AND@ PHOTOBIOLOGICAL SCIENCES 10, 664–669, DOI: 10.1039/c0pp00343c (2011).
[5] Korbelik, M. & Sun, J. Photodynamic therapy-generated vaccine for cancer therapy. CANCER IMMUNOLOGY IMMUNOTHERAPY 55, 900–909, DOI: 10.1007/s00262-005-0088-4 (2006).
[6] Gollnick, S., Vaughan, L. & Henderson, B. Generation of effective antitumor vaccines using photodynamic therapy. CANCER RESEARCH 62, 1604–1608 (2002).
[7] Korbelik, M., Sun, J. & Cecic, I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: Relevance for tumor response. CANCER RESEARCH 65, 1018–1026 (2005).
[8] Vega, V. L. et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages.
JOURNAL OF IMMUNOLOGY 180, 4299–4307, DOI: 10.4049/jimmunol.180.6.4299 (2008).
[9] Segal, B. et al. Heat shock proteins as vaccine adjuvants in infections and cancer. DRUG DISCOVERY TODAY 11, 534–540, DOI: 10.1016/j.drudis.2006.04.016 (2006).
[10] Garg, A. D., Krysko, D. V., Vandenabeele, P. & Agostinis, P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. PHOTOCHEMICAL @AND@ PHOTOBIOLOGICAL SCIENCES 10, 670–680, DOI: 10.1039/c0pp00294a (2011).
[11] Keidar, M. et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. BRITISH JOURNAL OF
CANCER 105, 1295–1301, DOI: 10.1038/bjc.2011.386 (2011).
[12] Ratovitski, E. A. et al. Anti-Cancer Therapies of 21st Century: Novel Approach to Treat Human Cancers Using Cold
Atmospheric Plasma. PLASMA PROCESSES AND POLYMERS 11, 1128–1137, DOI: 10.1002/ppap.201400071 (2014).
[13] Gay-Mimbrera, J. et al. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.
ADVANCES IN THERAPY 33, 894–909, DOI: 10.1007/s12325-016-0338-1 (2016).
[14] Su Chul Jang,Oh Youn Kim, Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013 Sep 24;7(9):7698-710. DOI: 10.1021/nn402232g (2013)
[15] Anthony Covarrubias1, Vanessa Byles1, Tiffany Horng1. ROS sets the stage for macrophage differentiation. Cell Research (2013) 23:984-985. DOI:10.1038/cr.2013.88; (2013)
[16] Theerawut Chanmee , Pawared Ontong , Kenjiro Konno. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers 2014, 6, 1670-1690; DOI:10.3390/cancers6031670 (2014)
[17] Feifan Zhou, Da Xing. Regulation of HSP70 on activating macrophages using PDT induced apoptotic cells. Int J Cancer . 2009 September 15; 125(6): 1380–1389. DOI:10.1002/ijc.24520 (2009)
[18] Yang, M., McKay, D., Pollard, J. W. & Lewis, C. E. Diverse Functions of Macrophages in Different Tumor Microenviron-
ments. CANCER RESEARCH 78, 5492–5503, DOI: 10.1158/0008-5472.CAN-18-1367 (2018).
[19] Dayun Yan. Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment.
[20] Pollard, J. Tumour-educated macrophages promote tumour progression and metastasis. NATURE REVIEWS CANCER 4,
71–78, DOI: 10.1038/nrc1256 (2004).
[21] Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-Associated Macrophages as Major Players in the Tumor
Microenvironment. CANCERS 6, 1670–1690, DOI: 10.3390/cancers6031670 (2014).