| 研究生: |
張喬冠 Chiao-Kuan Chang |
|---|---|
| 論文名稱: |
積層製造用高韌性鐵基金屬玻璃合金粉體之開發與製作 Development and fabrication of Fe-based metallic glass powder with high fracture toughness for additive manufacturing |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 鐵基 、金屬玻璃 、氣噴粉 、積層製造 、破裂韌性 |
| 外文關鍵詞: | Fe-based, Metallic glasses, Gas atomization, Additive manufacturing, Fracture toughness |
| 相關次數: | 點閱:27 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目標是製作出高韌性之鐵基金屬玻璃合金粉體,藉以應用於積層製造上,積層製造目前被認為是最有能力能應用至MIM異型水路製作技術上,而在未來會以此技術並結合鐵基金屬玻璃粉體開發出MIM異型水路模具。
以Fe-Cr-Mo-C-B-Co-Y之合金組成作為實驗基礎,此成分具有優異的玻璃形成能力,且高硬度、高強度以及良好的耐腐蝕性質且使用工業級原料其製備成本也相對的低,但是,因其破裂韌性較低,本研究以改善其材料之破裂韌性為研究的首要目標藉以實現商業化的目的。
根據金屬玻璃形成能力之三大準則以及微量添加法,挑選出金屬:鋁,藉由添加微量元素,配置出不同系列合金,以改善鐵基金屬之破裂韌性。使用真空傾倒式鑄造製備出4mm之鐵基金屬玻璃之棒材,再快速冷卻時,基地中會析出BCC結構之α-Fe樹枝狀的組織使成為非金質合金內之第二相。研究結果顯示(Fe43Co7Mo14Cr15C10B7.5Al3.5),由於第二相軟相結構的產生,使得整體的鐵基金屬玻璃之韌性能有所改善。其破裂韌性數值由4.02 ± 0.2 MPa∙√m提升至12.29 ± 0.9 MPa∙√m。測試改質後的鐵基金屬玻璃複材與SS316、SS420、SKDII以及原基材鐵基金屬玻璃磨耗率,根據結果顯示,改質後的鐵基金屬玻璃複材之磨耗率(2.543 x 10-6 mm3/N·m)與原基材(2.064 x 10-6 mm3/N·m)兩者並無太大差異,和SS316 (2.078 x10-6 mm3/N·m)與SS420 (7.4 x 10-6 mm3/N·m)相比明顯低上許多,且和SKDII
之工具鋼相比(1.67 x 10-6 mm3/N·m),也無太大的差異,顯示其鐵基金屬玻璃優良的耐磨耗性質。
將此改質後的鐵基金屬玻璃複材以真空感應高週波融煉並澆鑄成鐵基金屬玻璃合金鑄錠,再以氣噴粉體法(Gas atomization)製備出金屬玻璃粉體,將每一爐次粉體經搖篩機篩分,再以X光繞射確認其各區間粒徑粉體之非晶性與析出相之關係,根據結果顯示,當粒徑在90µm以下,皆只保留非晶特徵峰以及α-Fe組織,隨著粒徑越小其α-Fe的結晶峰強度也隨之降低;而粒徑>90µm除了α-Fe之BCC結構外,還有碳化物的結構,之後運用掃描式電子顯微鏡觀測其粉體外觀,由結果顯示,粉體形貌為球型且截面皆為實心構造,故此粉體適合應用於積層製造上。
關鍵字 : 鐵基金屬玻璃、破裂韌性、磨耗測試、氣噴粉體法、積層製造
In order to increase the cooling rate and molding life of the mold for metal injection molding (MIM), the stronger Fe based amorphous alloy powder accompanied with the laser additive manufacturing(LAM) technique were proposed to produce the MIM mold with conformal cooling channels. In this study, a modified Fe-based amorphous alloy composition with better fracture toughness was developed and fabricated into spherical powder via gas-atomization. At first, the alloy composition of Fe41Cr15Mo14C12B9Co7Y2 amorphous alloy with good glass forming ability was selected as the base alloy by adding with 3-7.5 w.t.% Al to improve its fracture toughness. The optimum result occurs at the modified Fe-based amorphous alloy with 3.5 wt.% Al addition (Fe43Co7Mo14Cr15C10B7.5Al3.5). The alloy hardness slightly decreased from 1200 to 925 HV and the fracture toughness was significantly improved from 4.78 ± 0.9 to 12.29 ± 0.9 MPa·m1/2. Moreover, the modified Fe-based amorphous alloy shows the minimum wear rate of 2.543 x 10-6 mm3/N·m among all samples in comparison with the alloy of SS316, SS420, SKDII, and the original Fe-based amorphous alloy.
Secondary, the modified Fe-based amorphous alloy was fabricated into spherical alloy powder by gas atomization and characterized its amorphous status by X-ray diffraction (XRD). The XRD results revealed that a broaden peak accompanied the weak crystalline peaks of α-Fe and carbide phases occurred at the alloy powders with particle size under 90 μm, respectively. In parallel, the appearance of all these Fe-based alloy powders present a spherical shape and a solid cross-section. Hence, it is believed that this modified Fe-based amorphous alloy powder is suitable for MIM mold with conformal cooling channels by laser additive manufacturing.
Keyword : Fe-based bulk metallic glass, fracture toughness, abrasion test,
gas atomization, additive manufacturing
[1] A. C. Lund, " Topological and chemical arrangement of binary alloys during severe deformation ", Journal of Applied Physics, Vol. 95 pp.4815-4822 (2004).
[2] H. S. Chen , H.J. Leamy, and C. E. Miller, "Preparation of glassy metals", Ann. Rev. Mater. Sci. 10:363-91 (1980).
[3] L. Wang, and Y. Chao, "Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl solution", Materials Letters, Vol. 69 pp.76-78 (2012).
[4] A. Inoue, and K. Hashimoto (eds). "Amorphous and nanocrystalline materials. Preparation, properties, and application", Journal of Solid State Electrochemistry, Vol. 6, pp.288-289, (2001).
[5] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys", Acta Materialia, Vol. 48, pp. 279-306, (2000).
[6] J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, "Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication", Materials Science and Engineering, Vol. A449–451, pp. 898–902, (2007).
[7] S. C. Jang, P. H. Tsai, A. Z. Shiao, T. H. Li, C. Y. Chen, J. P. Chu, J. G. Duh, M. J. Chen, S. H. Chang, and W. C. Huang, "Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film", Intermetallics, Vol. 65, pp. 56-60, (2015).
[8] J. T. Strauss, "Metal injection molding (MIM) of precious metals", Handbook of Metal Injection Molding, Vol. 25, pp.609-622, (2019).
[9] B. Zhou, J. Zhou, H. Li, and F. Lin, "A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum", Materials Science and Engineering A, Vol. 724, pp.1-10, (2018).
[10] Z. Mahbooba, L. Thorsson, M. Unosson, P. Skoglund, H. West, T. Horn, C. Rock, E. Vogli, and O. Harrysson, "Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness", Applied Materials Today, Vol. 11, pp.264-269, (2018).
[11] P. H. Tsai, A. C. Xiao, J. B. Li, J. S. C. Jang, J. P. Chun, and J. C. Huang," Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance", Journal of alloys and compounds, Vol 586,pp.94-98, (2014).
[12] J. Kramer, "Produced the first amorphous metals through vapor deposition", Annals of Physics, Vol. 19, pp. 37, (1934).
[13] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt", Journal of Research of the National Bureau of Standards, Vol. 44, pp. 109-122, (1950).
[14] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in solidified Gold-Silicon alloys", Nature, Vol. 187, pp. 869-870, (1960).
[15] H. S. Chen, "Glassy metals", Rep. Prog. Phys, Vol. 43, pp. 364, (1980).
[16] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying, Applied Physics Letters", Vol. 43, pp. 1017-1019, (1983).
[17] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates", Materials Transactions JIM, Vol. 36, pp. 866-875, (1995).
[18] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method", Material Transactions JIM, Vol. 31, pp. 425-428, (1990).
[19] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method", Materials Transactions JIM, Vol. 33, pp. 937-945, (1992).
[20] A. Inoue, Y. Shinohara, and J. S. Gook, " Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting", Material Transactions, Vol. 36, pp.1427-1433, (1995).
[21] R. Babilas, and R. Nowosielski , "Iron-based bulk amorphous alloys", Archives of Materials Science and Engineering, Vol. 44, Issue 1, pp. 5-27, (2010).
[22] J. Shen, Q. J. Chen, J. F. Sun, H. B. Fan, and G. Wang, " Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy", Applied physics letters, Lett.90, (2005).
[23] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy Principles, Third edition, (1994).
[24] K. W. Dalgarno and T.D. Stewart, " Manufacture of production injection mould tooling incorporating conformal cooling channels via indirect selective laser sintering", proceeding of the institution of mechanical engineers, Vol. 215, Issue 10, pp. 1323-1332, (2001).
[25] C. Suryanarayana, and A. Inoue, "Bulk Metallic Glassed", p.61, (2011).
[26] G. N. Jackson, “R. F. sputtering”, Thin Solid Film, Vol. 5, p.209, (1907).
[27] K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, (1969).
[28] A. Inoue, Materials Transactions JIM, Vol. 36, pp. 866, (1995).
[29] Z. P. Lu, and C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses", Acta Materilia, Vol. 50, pp. 3501-3512, (2002).
[30] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass Forming Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol. 101, pp. 086108-1-3, (2007).
[31] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, and T. T. Goh , "Glass forming ability of bulk glass forming alloys" , Scr Mater , Vol. 36 , P. 783 , (1997).
[32] S. Guo, Z. P. Lu, and C. T. Liu, "Identify the best glass forming ability criterion", Intermetallics ,Vol. 18 , pp. 883-888 , (2010).
[33] H. M. Ismaeel, M. A. Khattck, M. N. Tamin, M. S. Kham, N. Lqbal , S. Kazi , S. Badshah , and R.U. Khan , "Energy Absorption Ability of Thin-Walled Square Hollow Section of Low Carbon Sheet Metals under Quasi-Static Axial Compression" , Journal of Advanced Research in Applied Mechanics , Vol. 18 , pp. 1-14, (2016).
[34] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements", Journal of the American Ceramic Society, Vol.6, pp. 533-538, (1981).
[35] 蔡錫堯,材料實驗,新文京開發出版有限公司,P363.
[36] Randall M. German, Powder Metallurgy Science, Second edition, (1994).
[37] G. Antipas, " Liquid Column Deformation and Particle Size Distribution in Gas Atomization", Mater. Sci. Appl. Vol. 2, pp. 87-96, (2011).
[38] 蔡恆毅,"選擇性雷射燒熔製程",工業材料雜誌,Vol. 369, pp. 112-121, (2017).
[39] B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and Dana M. Spence , " Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences", Analytical Chemistry, Vol. 86, pp. 3241-3243, (2014).
[40] Y. C. Li, C. Zhang, W. Xing, S. F. Guo, and L. Liu, "Design of Fe-Based Bulk Metallic Glasses with Improved Wear Resistance". ACS Applied Materials & Interfaces, Vol. 10, pp.43144-43155, (2018).
[41] X. J. Gu, S. Joseph Poon, G. J. Shiflet, and M. Widom, “Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure”, Acta Materialia, Vol. 56, pp. 88–94, (2008).
[42] W. Pilarczyk, and A. Mucha, " The influence of yttrium addition on the GFA of selected iron-based BMG", Archives of Materials Science and Engineering, Vol. 44, pp. 87-95, (2010).