跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何彥璋
Yan-zhang He
論文名稱: 強耦合有機微共振腔之設計與研究
Design and research of the strongly coupled organic semiconductor microcavities
指導教授: 李正中
Cheng-chung Lee
張瑞芬
Jui-fen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 極化子微共振腔強耦合有機
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究由金屬-介電質反射鏡所組成的微共振腔內光子與激子強耦合的現象。激子材料為具有J-aggregate排列形式的有機花青染料DEDOC分子,並以Layer-by-layer製備法製作成高吸收薄膜後做為主動層置入微共振腔。
    我們設計三組不同腔長的微共振腔,分別是120 nm、145 nm、210 nm,量測變角度反射頻譜後對照理論模擬的極化子能態分布。接下來量測變角度光致發光頻譜,不僅三組微共振腔均在室溫下量測到極化子中較低能態(lower polariton branch)的出光,另外在腔長210 nm的微共振腔量測到來自極化子中較高能態(upper polariton branch)的出光,成功經由實驗驗證極化子能態的產生,證實了光子與激子強耦合的機制。


    We study the photon and exciton strongly coupled phenomenon in the metal-dielectric mirror microcavity. The material of exciton is DEDOC cyanine dyes having a J-aggregates form, which manufactured the high absorption thin films by layer-by-layer assembly. As a active layer, the DEDOC thin films are placed in the microcavity.
    We design the three different cavity length, respectively, 120 nm, 145 nm, 210 nm. From the angle-resolved reflection spectra, we demonstrated the generation of polariton states, well matching with the simulation. Next, from the angle-resolved photoluminescence spectrum, we observed the PL from lower polariton branch in three types of microcavities, and also observed the PL from upper polariton branch for the cavity length of 210 nm. We verify the produce of the polariton energy state through experimental successfully and confirm the mechanism of photon and exciton strongly coupled.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1-1 研究背景 1 1-2 有機材料的研究發展 6 1-3 研究動機 9 第二章 原理與理論分析 10 2-1 微共振腔的薄膜理論 10 2-1-1 單界面的穿透與反射 10 2-1-2 單層膜的穿透與反射 12 2-1-3 多層膜的穿透與反射 16 2-1-4 斜向入射的修正 17 2-1-5 電場分布 18 2-2 微共振腔的色散關係 19 2-3 微共振腔的共振模態與強耦合作用 21 2-4 J-aggregate排列之青染料分子 24 第三章 實驗架構 27 3-1 Layer-by-layer製備法 27 3-1-1 製備法原理 27 3-1-2 PDAC/DEDOC薄膜製備 29 3-2 製程儀器 32 3-2-1 雙電子槍蒸鍍機 32 3-3 量測儀器 34 3-3-1 紫外光/可見光光譜儀 34 3-3-2 積分球光譜儀 35 3-3-3 光致發光量測系統 36 第四章 微共振腔內的強耦合現象 37 4-1 微共振腔的設計與製作 37 4-2 微共振腔在變角度下的反射頻譜與分析 44 4-3 微共振腔的光致發光頻譜與分析 49 第五章 結論與未來展望 56 參考文獻 58

    [1] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, et al., "Bose-Einstein condensation in a gas of Sodium atoms," Physical Review Letters, vol. 75, pp. 3969-3973, 1995.
    [2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of bose-einstein condensation in a dilute atomic vapor," Science, vol. 269, pp. 198-201, 1995.
    [3] A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, "Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers," Phys Rev A, vol. 53, pp. 4250-4253, 1996.
    [4] H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, "Polariton lasing vs. photon lasing in a semiconductor microcavity," Proc Natl Acad Sci U S A, vol. 100, pp. 15318-23, 2003.
    [5] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, et al., "Polariton laser using single micropillar GaAs−GaAlAs semiconductor cavities," Physical Review Letters, vol. 100, 2008.
    [6] D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, et al., "Polariton light-emitting diode in a GaAs-based microcavity," Physical Review B, vol. 77, 2008.
    [7] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, pp. 3314-3317, 1992.
    [8] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. Keeling, et al., "Bose-Einstein condensation of exciton polaritons," Nature, vol. 443, pp. 409-14, 2006.
    [9] K. S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, et al., "All-dielectric GaN microcavity: Strong coupling and lasing at room temperature," Applied Physics Letters, vol. 102, p. 101113, 2013.
    [10] H. M. Gibbs, G. Khitrova, and S. W. Koch, "Exciton-polariton light-semiconductor coupling effects," Nat Photon, vol. 5, pp. 273-273, 2011.
    [11] V. Timofeev and D. Sanvitto, Exciton Polaritons in Microcavities New Frontiers vol. 172: Springer, 2012.
    [12] D. Bajoni, "Polariton lasers. Hybrid light–matter lasers without inversion," Journal of Physics D: Applied Physics, vol. 45, p. 409501, 2012.
    [13] S. Forget and S. Chénais, Organic Solid-State Lasers vol. 175: Springer, 2013.
    [14] D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55, 1998.
    [15] D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical Review Letters, vol. 82, pp. 3316-3319, 1999.
    [16] 李正中, 薄膜光學與鍍膜技術, 第七版 新北市, 藝軒圖書出版社, 2012.
    [17] 林成之, "有機染料分子薄膜之光電特性研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園市, 2014.
    [18] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, 2010.
    [19] C. F. Klingshirn, Semiconductor Optics vol. 3: Springer, 2012.
    [20] V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, "Cavity polaritons in microcavities containing disordered organic semiconductors," Physical Review B, vol. 67, 2003.
    [21] S. Kéna-Cohen and S. R. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, pp. 371-375, 2010.
    [22] L. Mazza, S. Kéna-Cohen, P. Michetti, and G. C. La Rocca, "Microscopic theory of polariton lasing via vibronically assisted scattering," Physical Review B, vol. 88, p. 075321, 2013.
    [23] G. H. Lodden and R. J. Holmes, "Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor," Physical Review B, vol. 82, 2010.
    [24] D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, "Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation," Physical Review B, vol. 65, 2002.
    [25] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton Bose-Einstein condensation," Reviews of Modern Physics, vol. 82, pp. 1489-1537, 2010.
    [26] E. E. Jelley, "Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride.pdf," Nature, vol. 139, pp. 631-632, 1937.
    [27] E. E. Jelley, "Spectral absorption and fluorescence of dyes in the molecular state," Nature, vol. 138, pp. 1009-1010, 1936.
    [28] F. Wurthner, T. E. Kaiser, and C. R. Saha-Moller, "J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials," Angew Chem Int Ed Engl, vol. 50, pp. 3376-410, 2011.
    [29] M. S. Bradley, J. R. Tischler, and V. Bulović, "Layer-by-Layer J-aggregate thin films with a peak absorption constant of 10^6 cm^–1," Advanced Materials, vol. 17, pp. 1881-1886, 2005.
    [30] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, 2013.
    [31] 鄭慶偉, "有機分子微共振腔光子與激子強耦合之研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園市, 2014.
    [32] R. K. Iler, "Multilayers of colloidal particles," Journal of Colloid and Interface Science, vol. 21, pp. 569-594, 1966.
    [33] X. Zhang, H. Chen, and H. Zhang, "Layer-by-layer assembly: from conventional to unconventional methods," Chem Commun (Camb), pp. 1395-405, 2007.
    [34] H. Fukumoto and Y. Yonezawa, "Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye," Thin Solid Films, vol. 327–329, pp. 748-751, 1998.
    [35] T. Tani, M. Saeki, Y. Yamaguchi, T. Hayashi, and M. Oda, "Microscopic exciton properties of fibril-shaped molecular J-aggregates prepared in ultra-thin polymer films," Journal of Luminescence, vol. 107, pp. 339-346, 2004.
    [36] S. H. Chen, C. H. Wang, Y. W. Yeh, C. C. Lee, S. L. Ku, and C. C. Huang, "Polarization filters with an autocloned symmetric structure," Appl Opt, vol. 50, pp. C368-72, 2011.
    [37] B. Y. Jung, N. Y. Kim, C. Lee, C. K. Hwangbo, and C. Seoul, "Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure," Appl Opt, vol. 41, pp. 3312-8, 2002.

    QR CODE
    :::