| 研究生: |
楊邦孝 Pang-Hsiao Yang |
|---|---|
| 論文名稱: |
探討合成含四級胺鹽之金奈米粒子之條件 Incorporation of Ammonium Groups onto Gold Nanoparticles |
| 指導教授: |
胡紀如
Jih-Ru Hwu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 金奈米粒子 、四級胺鹽 |
| 外文關鍵詞: | Gold Nanoparticles, Ammonium Groups |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們先合成出化合物N,N-dimethyldecanethiol (6),並利用氯金酸與檸檬酸鈉製備出粒徑大小約為13 nm 之金奈米粒子水溶液7。再將過當量之化合物N,N-dimethyldecanethiol (6)與金奈米粒子水溶液7 混合,震盪3.0 小時後,因為金奈米粒子7之比重比N,N-dimethyldecanethiol (6)來得大很多,則可藉由離心除去未接上金奈米粒子之化合物N,N-dimethyldecanethiol (6),可得到硫金鍵官能基化之金奈米粒子8。再利用LiI 與3-bromo-1-propanol混合液與硫金鍵官能基化之金奈米粒子8反應,震盪24.0小時後,再藉由離心除去未反應掉之LiI 與3-bromo-1-propanol混合液,則可合成出具有四級胺鹽之金奈米粒子9。
可利用不同型態金奈米粒子水溶液之溶液顏色、紫外線光譜 (UV)、熱重量損失分析圖譜 (TGA)、紅外線光譜 (IR)和穿透式電子顯微鏡(TEM),判斷並討論三種金奈米粒子水溶液之性質。
The first step is to synthesize N,N-dimethyldecanethiol (6), and use HAuCl4 and sodium citrate to react then get 13 nm gold nanoparticales (7). Following step is to mix N,N-dimethyldecanethiol (6) and gold nanoparticales (7). After 3.0 hrs , we can use centrifugation to remove N,N-dimethyldecanethiol (6), which is not connected with gold nanoparticales (7) to get compound 8. Then we functionalize the compound 8 by using the LiI and 3-bromo-1-propanol successfully, and we get the compound 9.
We can use ultraviolet spectroscopy (UV) , thermogravimetric analyzer (TGA) , infrared spectroscopy (IR) and transmission electron microscopy (TEM) to determine and discuss the three types of gold nanoparticales.
(1) Dubois, J. Expert Opin. Ther. Pat. 2006, 16, 1481–1496.
(2) Marupudi, N. I.; Han, J. E.; Li, K. W.; Renard, V. M.; Tyler, B. M.; Brem, H. Expert Opin. Drug Saf. 2007, 6, 609–621.
(3) Ojima, I. Acc. Chem. Res. 2008, 41, 108–119.
(4) Schiff, P. B.; Horwitz, S. B. Proc. Natl. Acad. Sci. U. S. A. 1980, 77, 1561–1565.
(5) Dugas, H.; Penney, C. In Bioorganic Chemistry, A Chemical Approach to Enzyme Action; Cantor, C. R., Eds.; Springer–Verlag: Berlin, 1981; p 36.
(6) Li, L.; Fan, M.; Brown, R.C.; Leeuwen, J. H. V.; Wang, J.; Wang, W.; Song, Y.; Zhang, P. Environ. Sci. Technol. 2006, 36, 405–431.
(7) Shan, J.; Tenhu, H. Chem. Commun. 2007, 44, 4580–4598.
(8) For recent reviews, see: (a) Han, G.; Ghosh, P.; Rotello, V. M. Nanomedicine 2007, 2, 113–123. (b) Han, G.; Ghosh, P.; De, M.; Rotello, V. M. NanoBiotechnology 2007, 3, 40–45.
(9) Hwu, J. R.; Hakimelahi, G. H.; Sambaiah, T.; Patel, H. V.; Tsay, S. C.; Lai, Y. K.; Lieu, C. H. Bioorg. Med. Chem. Lett. 1997, 7, 545–548.
(10) Ambaiah, T.; King, K. Y.; Tsay, S. C.; Mei, N. W.; Hakimelahi, S.; Lai, Y. K.; Lieu, C. H.; Hwu, J. R. Eur. J. Med. Chem. 2002, 37, 349–353.
(11) Hsu, M. H.; Josephrajan, T.; Yeh, C. S.; Shieh, D. B.; Su, W. C.; Hwu, J. R. Bioconjugate Chem. 2007, 18, 1709–1712.
(12) Bishnu, P.; Khanal.; Eugene, R.; Zubarev. J. Am. Chem. Soc. 2008, 130, 12634–12635.
(13) Zhu, M. Q.; Wang, L. Q.; Gregory, J. E.; Alexander, D. Q. J. Am. Chem. Soc. 2004, 126, 2656–2659.
(14) Verma, A.; Rotello, V. M. Chem. Commun. 2005, 3, 303–312.
(15) Source: http://www.devicelink.com/ivdt/archive/00/03/004.html
(16) Cocker, W.; Geraghty, N. W. A.; McMurry, T. B. H. J. Chem. Soc. 1984, 1, 2245–2254.
(17) Block, E.; Dikarev, E. V.; Glass, R. S.; Jin.J.; Li, B.; Li, X.; Zhang, S. Z. J. Am. Chem. Soc. 2006, 128, 14949–14961.
(18) Pérez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.; Zerbetto, F. J. Am. Chem. Soc. 2004, 126, 12210–12211.
(19) Tranchant, I.; Hervé, A. C.; Carlisle, S.; Lowe, P.; Slevin, C. J.; Forssten, C.; Dilleen, J.; Tabor, A. B.; Williams, D. E.; Hailes, H. C. Bioconjugate Chem. 2007, 18, 199–208.
(20) Frens, G. Nat. Phys. Sci. 1973, 241, 20–22.
(21) Tarun K. M.; Michael S. F.; David R. W. Nano Letters. 2002, 2, 3–7.