| 研究生: |
陳冠宇 Kuan-Yu Chen |
|---|---|
| 論文名稱: | Optimal Asset Allocation using Black-Litterman with Smooth Transition Model |
| 指導教授: |
孫立憲
Li-Hsien Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 平穩過渡GARCH模型 、布萊克-李特曼 模型 、馬克維茲 |
| 外文關鍵詞: | Smooth Transition GARCH, Black-Litterman, Markowitz |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的金融市場上,Markowitz 提出的模型普遍地被運用在投資上。然而,由於參數過於敏感,所以在實務上很容易產生誤差導致報酬率不好。在我們的研究中使用了 Black-Litterman 模型來建立投資組合,藉由隱含報酬率結合投資者的觀點可以修正預期的報酬率。此外,我們也運用了 ST-GARCH 模型去捕捉資料中大波動的問題,其中的 ST 模型可以用來調整模型中的參數,使得 ST-GARCH 模型比起單純的 AR-GARCH模型更加靈活一點。最後,我們再運用台灣各行業的龍頭股來做一些實
證分析。
In fi nancial markets, the model proposed by Markowitz is widely used in investment.However, the sensitive parameters lead to make errors in practice easily that results in poor returns. In this project, we use the Black-Litterman model to establish the portfolio, and the expected rate of return can be corrected by the implied return combined with the investor’s views. In addition, we also use the ST-GARCH model to capture large fl uctuations in the data. The ST model can be used to adjust parameters in the model, making the ST-GARCH model more fl exible than the simple AR-GARCH model. Finally, we use the leading stocks in various industries in Taiwan stock market in empirical analysis.
[1] Beach, S. L. and A. G. Orlov (2007). An application of the Black–Litterman model with EGARCH-M-derived views for international portfolio management. Financial Markets and Portfolio Management 21, 147-166.
[2] Black, F. and R. Litterman (1991). Asset Allocation: Combining Investor Views with Market Equilibrium. Journal of Fixed Income 1(2), 7-18.
[3] Black, F. and R. Litterman (1991). Global Portfolio Optimization. Financial Analysts Journal 48(5), 28-43.
[4] Chen, C.W.S. (2017). Pair trading based on quantile forecasting of smooth transition GARCH models. The North American Journal of Economics and Finance 39, 38-55.
[5] Chen, C.W.S.,& So, M.K.P. (2006). On a threshold heteroscedastic model. International Journal of Forecasting 22, 73-89.
[6] Christian, F. & Jean, M.Z. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10, 605-637.
[7] Engle, R.F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Infl ation. Econametrica 50, 987-1008.
[8] Gerlach, R. & Chen, C.W.S (2008). Bayesian inference and model comparison for asymmetric smooth transition heteroskedastic models. Statistics and Computing 18, 381-408.
[9] Idzorek, T. (2004). A step-by-step guide to the Black-Litterman model. Working paper.
[10] Lin, W.H (2015). Asset Allocation Based on the Black-Litterman and GARCH Models. Working paper.
[11] Markowitz, H. (1952). Portfolio Selection. Journal of Finance 7(1), 77-91.
[12] Meucci, A. (2010). The Black-Litterman Approach: Original Model and Extensions. THE Encyclopedia of Quantitative Finance.
[13] Nelson, B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach.Econometrica 59(2), 347-370.
[14] Ross, S.A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 343-362.
[15] Terasvirta, T. (1994). Specifi cation, Estimation, and Evaluation of Smooth Transition Autoregressive Models. Journal of the American Statistical Association 89, 208-218.