| 研究生: |
王覺漢 Chueh-Han Wang |
|---|---|
| 論文名稱: |
石墨烯/奈米鈀/離子液體複合電極之電化學感測性質研究 Electrochemical Sensing Performance of Graphene/Palladium/Ionic liquid Nanocompositie Electrodes |
| 指導教授: |
張仍奎
Jeng-Kuei Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 石墨烯 、離子液體 、鈀 |
| 外文關鍵詞: | palladium, ionic liquid, graphene |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以石墨烯 (graphene)及多壁奈米碳管兩種奈米級碳材作為電化學感測的基材,感測物為抗壞血酸 (Ascorbic Acid)、多巴胺 (Dopamine)及尿酸 (Uric Acid),為了增加感測的靈敏度及選擇性,利用超臨界流體技術,將鈀奈米顆粒均勻負載於碳材上,增加反應表面積,以單純碳材或將鈀奈米顆粒負載於碳材上的複合材料作為感測電極時,多壁奈米碳管的催化性質皆優於石墨烯;除了奈米顆粒外,另用也使用離子液體作為輔助,本實驗中使用六種離子液體1-ethyl-3-methylimidazolium thiocyanate (EMI-SCN)、1-butyl-1-methylpyrrolidinium bis(trifluoromethyl) sulfonyl imide (BMP-NTf2)、1-butyl-1-methylpyrrolidinium dicyanamide (BMP-DCA)、1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6 )、1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide (EMI-NTf2)及1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA)和碳材相混合,在離子液體輔助之下,電化學訊號獲得良好改善,且遠優於利用鈀奈米顆粒作為輔助,而碳材的優劣也呈現相反的行為,改以石墨烯優於多壁奈米碳管,為了進一步提升感測電極的靈敏度及選擇性,將碳材、鈀奈米顆粒及離子液體三者相結合,其結果卻未比單純碳材混合離子液體來的佳,此外,根據研究結果顯示,當利用離子液體作為輔助時,陰離子主導了電化學感測行為,依據增益效果排序為SCN- > DCA- > PF6- > NTF2-。
本研究中同時也以石墨烯為基材偵測葡萄糖,單純石墨烯並無法偵測葡萄糖,因此同樣以鈀奈米顆粒及離子液體作為輔助的材料,根據實驗結果,添加了鈀奈米顆粒後,可成功的偵測到葡萄糖,而僅有石墨烯及離子液體時則無法偵測到葡萄萄,但若將石墨烯、鈀奈米顆粒及離子液體三者相結合時則具加乘的效果,和偵測抗壞血酸、多巴胺及尿酸時呈現相反的結論,主要的原因為感測機制不同所造成,而離子液體的行為雖仍以陰離子主導,但增益的效果卻呈現相反的行為,依序為NTF2- > PF6- > DCA- > SCN-。
由實驗結果得知,對於不同的待測物可藉由石墨烯、鈀奈米顆粒及離子液體間的互相搭配,而達到最佳的偵測效果,顯示這三種材料運用於電化學感測器上的可行性。
In this study, we use graphen-based and multiwall carbon nanotubes-based(MWCNT) materials as electrochemical sensing electrode to detect ascorbic acid(AA), dopamine (DA) and uric acid (UA). In order to enhance sensitivity and selective, nano-sized Pd catalyst particles are uniformly dispersed on both the carbon supports using a supercritical fluid deposition techniquein in which the MWCNT/Pd electrode shows higher detection current than that of the Graphene/Pd electrode. Besides Pd NPs, IL also utilized for application, the detection sensitivity of the Graphene/IL electrode is significantly promoted and noticeably outperforms that of the MWCNT/IL. Six different ILs are investigated in this research, including 1-ethyl-3-methylimidazolium thiocyanate (EMI-SCN), 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl) sulfonyl imide (BMP-NTf2), 1-butyl-1-methylpyrroli dinium dicyanamide (BMP-DCA), 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6 ), 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide (EMI-NTf2) and 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA). Both Pd NPs and IL could improve sensing performance, nevertheless, mixture of Graphene/Pd/IL electrode is not as good as graphene/IL electrode. The experimental result elucidated the cation dominate the sensing behavior as SCN- > DCA- > PF6- > NTF2-.
In the case of glucose, graphene cannot detect glucose in spite of IL existence, while Pd NPs supports act as catalyst can enhance performance. Especially Graphene/Pd/IL combination could improve sensing performance, the sensing behavior that also effected by cation, there are NTF2- > PF6- > DCA- > SCN-.
For simultaneous detection different analyte, the satisfactory selectivity and sensitivity can obtain by choosing suitable NPs or ILs that performs great potential in electrochemical sensing.
參考文獻
1.Myung, Y., et al., Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures. The Journal of Physical Chemistry C, 2009. 113(4): p. 1251-1259.
2.Chen, X.-m., et al., Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosensors and Bioelectronics, 2010. 25(7): p. 1803-1808.
3.Huang, K.-J., et al., Enhanced sensing of dopamine in the present of ascorbic acid based on graphene/poly(p-aminobenzoic acid) composite film. Colloids and Surfaces B: Biointerfaces, 2011. 88(1): p. 310-314.
4.Bao, Y., et al., Graphene Oxide-Templated Polyaniline Microsheets toward Simultaneous Electrochemical Determination of AA/DA/UA. Electroanalysis, 2011. 23(4): p. 878-884.
5.Mallesha, M., et al., Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry, 2011. 81(2): p. 104-108.
6.Meng, L., et al., Nonenzymatic Electrochemical Detection of Glucose Based on Palladium−Single-Walled Carbon Nanotube Hybrid Nanostructures. Analytical Chemistry, 2009. 81(17): p. 7271-7280.
7.Chen, Y.S. and J.H. Huang, Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol. Biosens Bioelectron, 2010. 26(1): p. 207-12.
8.McCreery, R.L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews, 2008. 108(7): p. 2646-2687.
9. Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2009. 110(1): p. 132-145.
10.Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano, 2008. 3(9): p. 563-568.
11.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
12.Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
13. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
14.He, Q., et al., Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010. 4(6): p. 3201-3208.
15.Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010. 22(35): p. 3906-24.
16.Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010. 2(12): p. 1015-1024.
17.Wang, Y., et al., Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010. 4(4): p. 1790-1798.
18.Chen, D., L. Tang, and J. Li, Graphene-based materials in electrochemistry. Chem Soc Rev, 2010. 39(8): p. 3157-80.
19. Zhou, M., Y. Zhai, and S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical Chemistry, 2009. 81(14): p. 5603-5613.
20.Shang, N.G., et al., Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 2008. 18(21): p. 3506-3514.
21.Kachoosangi, R.T. and R.G. Compton, A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal Bioanal Chem, 2007. 387(8): p. 2793-800.
22.Zhu, H.W., et al., Direct synthesis of long single-walled carbon nanotube strands. Science, 2002. 296(5569): p. 884-6.
23.Balasubramanian, K. and M. Burghard, Chemically functionalized carbon nanotubes. Small, 2005. 1(2): p. 180-92.
24.Avouris, P., M. Freitag, and V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat Photon, 2008. 2(6): p. 341-350.
25. Qian, H., et al., Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level. Chemistry of Materials, 2008. 20(5): p. 1862-1869.
26.Chaudhary, S., et al., Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells. Nano Letters, 2007. 7(7): p. 1973-1979.
27.Chen, X.M., et al., A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron, 2009. 24(12): p. 3475-80.
28.Dai, L., et al., Aligned nanotubes. Chemphyschem, 2003. 4(11): p. 1150-69.
29.Wei, B.Q., et al., Microfabrication technology: Organized assembly of carbon nanotubes. Nature, 2002. 416(6880): p. 495-496.
30.Qu, L., F. Du, and L. Dai, Preferential Syntheses of Semiconducting Vertically Aligned Single-Walled Carbon Nanotubes for Direct Use in FETs. Nano Letters, 2008. 8(9): p. 2682-2687.
31.Campbell, J.K., L. Sun, and R.M. Crooks, Electrochemistry Using Single Carbon Nanotubes. Journal of the American Chemical Society, 1999. 121(15): p. 3779-3780.
32.Dumitrescu, I., et al., Ultrathin Carbon Nanotube Mat Electrodes for Enhanced Amperometric Detection. Advanced Materials, 2009. 21(30): p. 3105-3109.
33.Pumera, M., Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles even after Washing with Nitric Acid at Elevated Temperature Because These Metal Nanoparticles Are Sheathed by Several Graphene Sheets. Langmuir, 2007. 23(11): p. 6453-6458.
34. Fukushima, T., et al., Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 2003. 300(5628): p. 2072-4.
35.Sudhakara Prasad, K., G. Muthuraman, and J.-M. Zen, The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochemistry Communications, 2008. 10(4): p. 559-563.
36.Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nat Nano, 2008. 3(2): p. 101-105.
37.Ambrosi, A. and M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys Chem Chem Phys, 2010. 12(31): p. 8943-7.
38.Alwarappan, S., et al., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. The Journal of Physical Chemistry C, 2009. 113(20): p. 8853-8857.
39.Wang, Y., et al., Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 2009. 11(4): p. 889-892.
40.Wang, J., et al., Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochemistry Communications, 2009. 11(10): p. 1892-1895.
41.Welch, C. and R. Compton, The use of nanoparticles in electroanalysis: a review. Analytical and Bioanalytical Chemistry, 2006. 384(3): p. 601-619.
42.Hrapovic, S., et al., Metallic Nanoparticle−Carbon Nanotube Composites for Electrochemical Determination of Explosive Nitroaromatic Compounds. Analytical Chemistry, 2006. 78(15): p. 5504-5512.
43.Yang, M., et al., Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron, 2006. 21(7): p. 1125-31.
44.Wang, Z., et al., The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon, 2008. 46(13): p. 1687-1692.
45.Yang, S., et al., Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. Journal of Power Sources, 2008. 175(1): p. 26-32.
46.Dhar, S., et al., Targeted Single-Wall Carbon Nanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device. Journal of the American Chemical Society, 2008. 130(34): p. 11467-11476.
47.Yang, G.-W., et al., Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 2008. 46(5): p. 747-752.
48.Chen, C., et al., Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J Hazard Mater, 2009. 164(2-3): p. 923-8.
49.Yoo, E., et al., Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 2009. 9(6): p. 2255-2259.
50.Chen, X., et al., Synthesis of “Clean” and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. Journal of the American Chemical Society, 2011. 133(11): p. 3693-3695.
51.Li, F., et al., The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry, 2009. 19(23): p. 4022.
52.Huang, Z., et al., Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. Journal of Materials Chemistry, 2012. 22(5): p. 1781.
53. Leitner, W., Green chemistry: Designed to dissolve. Nature, 2000. 405(6783): p. 129-130.
54.Leitner, W., Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis. Accounts of Chemical Research, 2002. 35(9): p. 746-756.
55.DeSimone, J.M., Practical approaches to green solvents. Science, 2002. 297(5582): p. 799-803.
56.Bayrakceken, A., et al., Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. Journal of Power Sources, 2008. 179(2): p. 532-540.
57.Marre, S., F. Cansell, and C. Aymonier, Design at the nanometre scale of multifunctional materials using supercritical fluid chemical deposition. Nanotechnology, 2006. 17(18): p. 4594-9.
58.Ye, X.R., Y. Lin, and C.M. Wai, Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chemical Communications, 2003(5): p. 642-643.
59. Sun, Z., et al., Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution. J Colloid Interface Sci, 2006. 304(2): p. 323-8.
60.Cangul, B., et al., Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO2 deposition. The Journal of Supercritical Fluids, 2009. 50(1): p. 82-90.
61.Lin, Y., X. Cui, and X. Ye, Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications, 2005. 7(3): p. 267-274.
62.Liu, X., et al., Reactive Deposition of Palladium Nanoparticles onto Zeolite Membranes in Supercritical CO2. Industrial & Engineering Chemistry Research, 2010. 49(18): p. 8826-8831.
63.Shiddiky, M.J. and A.A. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron, 2011. 26(5): p. 1775-87.
64.Gale, R.J., B. Gilbert, and R.A. Osteryoung, Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures. Inorganic Chemistry, 1978. 17(10): p. 2728-2729.
65.Wei, D. and A. Ivaska, Applications of ionic liquids in electrochemical sensors. Anal Chim Acta, 2008. 607(2): p. 126-35.
66.Anastas, P.T. and J.B. Zimmerman, Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environmental Science & Technology, 2003. 37(5): p. 94A-101A.
67.Shan, C., et al., Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron, 2010. 25(6): p. 1504-8.
68.Zhang, Q., et al., Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron, 2011. 26(5): p. 2632-7.
69.Liu, Y., X. Zou, and S. Dong, Electrochemical characteristics of facile prepared carbon nanotubes–ionic liquid gel modified microelectrode and application in bioelectrochemistry. Electrochemistry Communications, 2006. 8(9): p. 1429-1434.
70.Lu, X., et al., Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications, 2006. 8(5): p. 874-878.
71.Laszlo, J.A. and D.L. Compton, Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2002. 18(1–3): p. 109-120.
72.Persson, M. and U.T. Bornscheuer, Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2003. 22(1–2): p. 21-27.
73.Liu, Y., et al., Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials. Chem Commun (Camb), 2005(13): p. 1778-80.
74.Safavi, A., et al., Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Analytical Biochemistry, 2006. 359(2): p. 224-9.
75.Maleki, N., A. Safavi, and F. Tajabadi, High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder. Analytical Chemistry, 2006. 78(11): p. 3820-3826.
76.Wang, Z., et al., Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst, 2002. 127(5): p. 653-658.
77.Wu, K., J. Fei, and S. Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Analytical Biochemistry, 2003. 318(1): p. 100-106.
78.Zhang, M., et al., Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosensors and Bioelectronics, 2005. 20(7): p. 1270-1276.
79.Liu, H., Y. Liu, and J. Li, Ionic liquids in surface electrochemistry. Phys Chem Chem Phys, 2010. 12(8): p. 1685-97.
80.Yang, Y.-C., et al., Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels. Electrochimica Acta, 2011. 56(17): p. 6021-6025.
81.Sun, W., et al., Application of chitosan/Fe3O4 microsphere-graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean Lectin gene sequence. Talanta, 2011. 87: p. 106-12.
82.Qiu, Y., et al., Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater, 2011. 190(1-3): p. 480-5.
83.Xiao, F., et al., Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosensors and Bioelectronics, 2009. 24(12): p. 3481-3486.
84.Yan, Q., et al., Voltammetric Determination of Uric Acid with a Glassy Carbon Electrode Coated by Paste of Multiwalled Carbon Nanotubes and Ionic Liquid. Electroanalysis, 2006. 18(11): p. 1075-1080.
85.Zhu, H., et al., Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta, 2009. 79(5): p. 1446-1453.
86.Zhao, Y., et al., Structural and characteristic analysis of carbon nanotubes-ionic liquid gel biosensor. Electrochemistry Communications, 2007. 9(10): p. 2457-2462.
87.Zhao, F., et al., Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials. Analytical Chemistry, 2004. 76(17): p. 4960-4967.
88.Safavi, A., N. Maleki, and E. Farjami, Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosensors and Bioelectronics, 2009. 24(6): p. 1655-1660.
89.Safavi, A., et al., High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochemistry Communications, 2007. 9(8): p. 1963-1968.
90.Du, M., et al., Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes. Anal Chim Acta, 2011. 690(2): p. 169-74.
91. Li, F., et al., Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010. 81(3): p. 1063-8.
92.Ho Yang, M., et al., Directed Self-Assembly of Gold Nanoparticles on Graphene-Ionic Liquid Hybrid for Enhancing Electrocatalytic Activity. Electroanalysis, 2011. 23(4): p. 850-857.
93.Li, Y., et al., Selective and sensitive detection of dopamine in the presence of ascorbic acid by molecular sieve/ionic liquids composite electrode. Electrochimica Acta, 2011. 56(6): p. 2730-2734.
94.Sun, W., et al., Electrochemical Determination of Ascorbic Acid in Room Temperature Ionic Liquid BPPF6 Modified Carbon Paste Electrode. Electroanalysis, 2007. 19(15): p. 1597-1602.
95.Sun, W., M. Yang, and K. Jiao, Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Anal Bioanal Chem, 2007. 389(4): p. 1283-91.
96.Pandurangachar, M., et al., Electrochemical deposition of 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid on carbon paste electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. Journal of Molecular Liquids, 2011. 158(1): p. 13-17.
97.Zhao, Y., et al., Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005. 66(1): p. 51-7.
98.Kachoosangi, R.T., et al., Carbon nanotube-ionic liquid composite sensors and biosensors. Anal Chem, 2009. 81(1): p. 435-42.
99.Huang, K.-J., et al., An electrochemical amperometric immunobiosensor for label-free detection of α-fetoprotein based on amine-functionalized graphene and gold nanoparticles modified carbon ionic liquid electrode. Journal of Electroanalytical Chemistry, 2011. 656(1-2): p. 72-77.
100.Liu, Z., et al., High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode. Sensors and Actuators B: Chemical, 2011. 157(2): p. 540-546.
101.Chai, J., et al., Hollow flower-like AuPd alloy nanoparticles: One step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid. Journal of Materials Chemistry, 2011. 21(44): p. 17922.
102.Maleki, N., A. Safavi, and F. Tajabadi, Investigation of the Role of Ionic Liquids in Imparting Electrocatalytic Behavior to Carbon Paste Electrode. Electroanalysis, 2007. 19(21): p. 2247-2250.
103.Zhang, Q., et al., Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron, 2011. 26(5): p. 2632-7.
104.Yang, M.H., et al., Development of a Glucose Biosensor Using Advanced Electrode Modified by Nanohybrid Composing Chemically Modified Graphene and Ionic Liquid. Electroanalysis, 2010. 22(11): p. 1223-1228.