跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡政蒼
Cheng-Tsang Tsai
論文名稱: 有限期間內考量缺貨與供應商產能限制下之最佳批次模式
Optimal Lot-sizing for a Deteriorating Item with shortage and limited capacity of supplier over Finite Planning Horizon
指導教授: 陳振明
Jen-ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 92
語文別: 中文
論文頁數: 61
中文關鍵詞: 損耗性商品缺貨供應商產能限制
外文關鍵詞: shortage, Deteriorating Item, limited capacity of supplier
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討一對一通路結構、有限多期環境下,買方之批量決策問題。傳統的存貨問題一般都未考量產品的自然損耗性及供應商產能限制對買方在制定購買決策時造成的影響。本研究將發展出一個考量缺貨、產品損耗性、缺貨待補率及每期訂購數量限制的批量決策方法。我們以華格納懷丁法(Wagner-Whitin approach)為基礎,在考量缺貨、產品損耗性(Deterioration)的前提之下,發展求解最低總成本之最佳訂購期及訂購數量之動態批量方法。其後,考量到現實環境中缺貨常帶來銷售機會的損失將缺貨待補率的觀念加入演算法之中;另外,供應商之每期產能能力關係到買方單期所能訂購之量,因此我們也將產能之限制加入演算方法之中。我們將分別討論需求之發生為離散及連續之下的演算方法,並將演算方法以數據代入,以敏感度分析的方式分析各項成本變動對於總成本及訂購政策所造成的影響。


    The purpose of this study is to develop an optimal replenishment policy for deteriorating inventory in a single-level MRP system with shortage and capacity constraint of supplier. We will develop an optimal dynamic lot sizing method base on Wagner-Whitin Approach. We will develop an optimal dynamic lot sizing method of discrete demand in chapter 3 and continuous demand in chapter 4 respectively. From our numerical analysis it is demonstrated that buyer’s total cost and replenishment policy are influenced by capacity constraint of supplier.

    論文提要 I 圖目錄 IV 表目錄 V 第一章 緒論 1 1.1研究背景及動機 1 1.2 研究情境 3 1.3 研究目的 4 1.4 研究架構 5 第二章 文獻回顧 7 2.1 動態批量方法之相關文獻 7 2.2 產能限制下批量問題之相關文獻 9 2.3 損耗性商品之相關文獻 11 2.4 本研究之探討模式 13 第三章 需求為離散下之訂貨政策 15 3.1 華格納懷丁法 15 3.1.1華格納懷丁法的假設 15 3.1.2華格納懷丁法的符號表示 15 3.1.3華格納懷丁法的求解步驟 16 3.2考量產品損耗性與缺貨下之動態需求規劃 17 3.2.1模式假設 17 3.2.2模式符號 18 3.2.3求解步驟 18 3.2.4範例說明 21 3.3考量缺貨、產品損耗性與供應商產能上限之動態需求規劃 23 3.3.1模式假設 23 3.3.2模式符號 23 3.3.3求解步驟 24 3.3.4範例說明與敏感度分析 27 第四章 需求為連續型態之訂貨政策 30 4.1需求為連續型態、耗損為指數型態之動態需求規劃 30 4.1.1模式假設 30 4.1.2模式符號 30 4.1.3求解步驟 31 4.2範例說明及敏感度分析 36 4.2.1範例說明 36 4.2.2敏感度分析 36 第五章 結論與未來研究方向 38 5.1結論 38 5.2未來發展方向 40 參考文獻 41 附錄 46 附錄A(4.1模式之推導) 46 附錄B(範例3.1需求為離散之敏感度分析表) 48 附錄C(範例3.1需求為連續之敏感度分析表) 55

    英文
    Armentano VA, Franca PM, de Toledo FMB(1999), A network flow model for the capacitated lot-sizing problem. OMEGA, Vol.27(2), pp.275-284.
    Awi Federgruem and Michal Tzur(1991), A simple forward algorithm to solve general dynamic lot sizing models with n periods in o(n log n) or o(n) time, Management Science, Vol.31, No.8, pp.909-925.
    B. Karimi, S.M.T. Fatemi Ghomi, J.M. Wilson(2003), The capacitated lot sizing problem: a review of models and algorithms, OMEGA, Vol.31, pp.365-378.
    Bashari-Kasani, H. (1989), Replenishment schedule for deteriorating items with time-proportional demand, Journal of the Operational Research Society, Vol.40, pp.75-81.
    Belvaux G, Wolsey LA(2001), Modeling practical lot-sizing problems as mixed integer programs, Management Science, Vol.47(7), pp.724-738.
    Ceveiye Gencer, Serpil Erol, Yalcin Erol(1999), A decision network algorithm for multi-stage dynamic lot sizing problems, International Journal of production economics, Vol.62(3), pp. 281-285.
    Chan G.H., Xia Z.H., Choo E.U.(1999), The critical cut-off value approach for dynamic lot sizing problems with time varying cost parameters, Computers & Operations Research, Vol.26(2), pp. 179-188.
    Chang, H.J. and Dye, C.Y. (1999), An EOQ model for deteriorating items with exponential time-varying demand and partial backlogging, International Journal of Information and Management Sciences, Vol. 10,pp. 1-11.
    Charles R. Sox (1997), Dynamic lot sizing with random demand and non-stationary costs, Operation Research Letters, Vol.20(4), pp. 155-164.
    Chung C, Flynn J, Lin CM(1994), An effective algorithm for the capacitated single item lot size problem, European Journal of Operation Research, Vol.75(2), pp.427-440.
    Chung-Yee Lee, Sila Cetinkaya, Albert P. M. Wagelmans(2001), A dynamic lot-sizing model with demand time windows, Management Science, Vol.47(10), pp.1384-1395.
    Chung-Yee Lee, Sila Cetinkaya, Albert P. M. Wagelmans(2001), A dynamic lot-sizing model with demand time windows, Management Science, Vol.47(10), pp.1384-1395.
    Christopher Suerie, Hatmut Stadtler(2003), The capacitated lot-sizing problem with linked lot sizes, Management Science, Vol.49, No.6, pp. 1039-1054.
    Cohen, M.A., (1977), Joint pricing and ordering policy for exponentially decaying inventory with known demand, Naval Research Logistics Quarterly, Vol.24, pp.257-268.
    Covert, R.P. and Philip, G.C. (1973), An EOQ model for items with Weibull distribution deteriorating, AIIE Transactions, Vol.5, pp.323-326.
    Deniz Aksen, Kemal Altinkemer and Suresh Chand (2003), The single-item lot-sizing problem with immediate lost sales, European Journal of Operation Research ,Vol.147, pp.558-566.
    Dave, U. and Patel, L. K., (1981), (T, ) policy inventory model for deteriorating items with items with time-proportional demand, Journal of the Operational Research Society, Vol.40, pp137-142.
    Deb, M. and Chaudhuri, K. (1987), A note on the heuristic for replenishment of trended inventories considering shortage, Journal of the Operational Research Society, VOL.38, pp459-463.
    Dogramaci A, Panayiotopoulos JC, Adam NR(1981), The dynamic lot-sizing problem for the multiple items under limited capacity, AIIE Transactions, Vol.13(4), pp.294-303.
    Donaldson, W.A. (1977), Inventory replenishment policy for a linear trend in demand – An analytical solution, Operations Research Quarterly, Vol.28, pp.663-670.
    Fatemi Ghomi SMT, Hashemin SS(2002), An analytical method for single level-constrained resources production problem with constant set-up cost. Iranian Journal of Science & Technology, Transaction B, Vol.26(B1), pp.69-82.
    Harris FW(1917), How many parts to make at once. Factory, The Magazine of Management, Vol.10(2), pp.135-136.
    Karni R, Roll Y(1982), A heuristic algorithm for the multi-item lot sizing problem with capacity constraints, AIIE Transactions, Vol.14(4), pp.249-259.
    Kirca O, Kokten M(1994), A new heuristic approach for the multi-item dynamic lot sizing problem, European Journal of Operation Research ,Vol.75(2), pp.332-341.
    Gowami, A., and Chaudhuri, K.S. (1991), An EOQ model for deteriorating items with shortages and linear trend in demand, Journal of the Operational Research Society, Vol.42, pp1105-1110.
    Ghare, P.M. and Schrader, GF (1963), A model for exponential decaying inventory, Journal of Industrial Engineering, Vol.14(6), pp.238-243.
    Gin Hor Chan and Kim Suan Chiu(1997), A simple heuristic for multi-product dynamic lot sizing problems, Computers Ops. Res., Vol.24, pp.969-979.
    Gunther HO(1987), Planning lot sizes and capacity requirements in a single stage production systems, European Journal of Operation Research, Vol.31(2), pp.223-231.
    Heinrich Kuhn(1997), A dynamic lot sizing model with exponential machine breakdown, European Journal of Operation Research, Vol.100, pp.514-536.
    J.Guttierrez, A. Sedeno-Noda, M.Colebrook, J. Sicilia(2002), A new characterization for the dynamic lot size problem with bounded inventory, Computer & Operation Research, Vol.30, pp.383-395.
    Jozesf Voros(1995), Setup cost stability region for the multi-level dynamic lot sizing problem, European Journal of Operation Research, Vol.87, pp.132-141.
    Orlicky J.(1975), Material requirement planning. New York: McGraw-Hill.
    Papachristos, S. and Skouri, K. (2000), An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging, Operations Research Letters, Vol.27, pp.175-184.
    Philip, G.C. (1974), A generalized EOQ model for items with Weibull distribution, AIIE Transactions, Vol.6, pp.159-162.
    Raafat F. (1991), Survey of Literature on Continuously Deteriorating Inventory Models, Journal of the Operational Research Society, Vol. 42(1), pp. 27-37.
    Scahan, R.S. (1984), On (T, ) policy inventory model for deteriorating items with time proportional demand, Journal of the Operational Research Society, Vol.11, pp1013-1019.
    Seliver EA, Meal HC(1973), A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunistic for replenishment, Production and Inventory Management, Vol.14(1), pp 64-74.
    Shah, Y.K. (1977), An order-level lot-size inventory model for deteriorating items, AIIE Transactions, Vol.9, pp. 108-112.
    Tadikamalla, P.R (1978), An EOQ inventory model for items with Gamma distribution, AIIE Transactions, Vol.10, pp.100-103.
    Thomas Ingold and Heinz Groflin (1997), Feasible sequential decision and a flexible lagrangean-based heuristic for dynamic multi-level lot sizing, Int. Trans. Opl. Res., Vol.4, No5/6, pp. 327-340.
    Trigerio WW(1989), A simple heuristic for lot-sizing with setup times, Decision Science, Vol.20, pp.294-303.
    Wagner, H. M., T. M. Whitin. (1985), Dynamic version of economic lot size model, Management Science, Vol.5, pp.89-96.
    Wee, H. M. (1995), A deterministic lot size inventory model for deteriorating items with shortage and a declining market, Computers and Operations Research, Vol.22, pp.345-356.
    Wee, H. M., Shum Yu-Su (1999), Note: Model development deteriorating inventory in material requirement planning systems, Computers & Industrial Engineering, Vol.36, pp.219-225.
    中文
    白建二、陳文賢、林哲生(1997) ,生產管理,國立空中大學,台北市
    陳銘崑(1997) ,現代生產管理,曉園書版社,台北市
    梁添富(1999),物料管理,育友圖書有限公司,台北市

    QR CODE
    :::