跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳姿秀
Tzu-Hsiu Chen
論文名稱: 同時聚合下製備聚苯乙烯/矽膠高分子混成體
Synthesis of Polystyrene/Silica Gel Polymer Hybrids by in-situ Polymerization Method
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 93
中文關鍵詞: 混成體溶膠-凝膠反應四乙氧基矽烷聚苯乙烯
外文關鍵詞: sol-gel reaction, tetraethoxysilane, polystyrene, hybrids
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 均一透明之聚苯乙烯與矽膠的高分子混成體可藉由同時聚合法製備而得。有機-無機混成體之製備方法為將苯乙烯單體導入在含有起始劑偶氮異二丁月青(AIBN)與四乙氧基矽烷(TEOS)、有機溶劑之溶膠-凝膠反應液中,經混合後在60℃下反應,使得矽膠生成時也同時產生聚苯乙烯高分子。
    本研究分兩部份來探討整個混成反應,也就是在探討不精製苯乙烯單體之下製備有機-無機混成體以及精製苯乙烯單體之下製備有機-無機混成體。
    不精製苯乙烯單體之下製備有機-無機混成體的研究中,探討改變反應條件是否能製備出透明之有機-無機混成體,例如酸的用量與濃度、水的添加量、起始劑的用量、無機相的添加量與溶劑的用量及種類等。結果顯示,在適量之乙醇或氰甲烷為溶劑下,添加少許水,就能得到透明之有機-無機混成體。當有機-無機混成體為一透明物時,觀察不到其玻璃轉移溫度,可以證明高分子鏈已經均勻分散在不定形之二氧化矽基材中。經由鍛燒後無機物中的孔徑大小(1.88nm)與表面積(325m2/g)、孔洞體積(152mm3/g),可判斷出聚苯乙烯是以奈米單位均勻分散在無機相的矽基材中。
    精製苯乙烯單體之下製備有機-無機混成體的研究,以改變反應物中之添加量為主,也就是改變水的添加量以及苯乙烯單體的添加量來製備有機-無機混成體。結果顯示溶膠-凝膠反應液中利用同時聚合法,改變含水量([H2O] / [TEOS] = 4.35×10-2∼10)與苯乙烯含量(St / TEOS = 0.184∼0.554)都可製備出聚苯乙烯與矽膠的高分子混成體。經由FTIR、DSC、TGA與ASAP之測定可知所製備之物為有機-無機混成體且孔徑大小為奈米單位。當水量含量較多時,其結構較為緊密,耐熱溫度較高。另外增加四乙氧基矽烷含量也會使透明之有機-無機混成體的耐熱溫度增加。經由透明之有機-無機混成體與熱萃殘餘物之TGA數據可算出,在本系統中有機部份與無機部份的組成比為0.232至0.817。


    Homogeneous polystyrene and silica gel polymer hybrids were prepared by in-situ radical polymerization in sol-gel reaction mixture. Styrene monomer was introduced into a sol-gel reaction mixture of tetraethoxysilane (TEOS) and the polymerization was initiated by 2,2''-azobisisobutyronitrile (AIBN) at 60℃, while sol-gel reaction of TEOS proceeded to form a silica gel.
    This study was divided into two parts depended on the preparation of hybrids by using styrene monomer with or without purification.
    In the part of the preparation of organic-inorganic hybrids by adding styrene monomer without purification, the main purpose were to confirm transparent hybrids could be prepared by this method or not and also to discuss the preparation conditions, the amount and concentration of acid, the amount of water, AIBN, TEOS and solvent. The results showed that the transparent hybrids were obtained even at adding small amount of water by using ethanol or CH3CN as solvent. The characterizations of the hybrids were determined by the results of GPC, DSC and TGA. The DSC curve of the transparent hybrids did not show any clear glass transition temperature. This lack of glass transition suggests that the polymer chains are uniformly distributed in the inorganic glass network. The porous silica obtained from the hybrids had high surface area and large pore volume and exhibited pore size 1.88 nm. These results indicate that polystyrene was dispersed at a nano-meter level in the silica gel matrix.
    In the part of the preparation of organic-inorganic hybrids by adding styrene monomer with purification, the main purpose was to investigate the effect of the concentration of reactants, water and styrene, on the hybrids. The results indicated that the transparent hybrids were obtained by adding various amounts of water([H2O] / [TEOS] = 4.35×10-2∼10)and styrene(St / TEOS = 0.184∼0.554)by in-situ radical polymerization in sol-gel reaction mixture. The characterizations and pore size of the hybrids were determined by the results of FTIR, DSC, TGA and ASAP. The TGA curves of the transparent hybrids show the higher heat-resistant of hybrids can be obtained by increase the amount of water and TEOS. The ratio of organic to inorganic parts was about 0.232 to 0.817.

    中文摘要…………………………………………………………………I 英文摘要………………………………………………………………III 表目錄…………………………………………………………………V 圖目錄………………………………………………………………VIII 第一章前言……………………………………………………………1 第二章實驗…………………………………………………………23 2-1實驗藥品………………………………………………………24 2-2實驗儀器………………………………………………………25 2-3有機-無機混成體之製備……………………………………26 2-3-1苯乙烯單體之精製……….………………………………26 2-3-2有機-無機混成體之製備…………………………………26 2-4有機-無機混成體之物性測試………………………………28 2-4-1有機-無機混成體中有機高分子之萃取…………………28 2-4-2聚苯乙烯高分子之分子量………………………………28 2-4-3玻璃轉移溫度測試………………………………………28 2-4-4熱重損失測試……………………………………………29 2-4-5表面積、孔洞體積與孔徑大小之分析…………………29 2-4-6紅外線光譜分析…………………………………………29 第三章結果與討論(I) ………………………………………………30 3-1有機-無機混成體之製備條件探討…………………………31 3-2有機-無機混成體之聚苯乙烯分子量探討…………………43 3-3有機-無機混成體之玻璃轉移溫度探討……………………45 3-4有機-無機混成體之熱性質分析……………………………47 3-5有機-無機混成體表面積、孔洞體積及孔徑大小…………50 3-6結論……………………………………………………………52 第四章結果與討論(II)………………………………………………53 4-1改變水量下製備有機-無機混成體…………………………54 4-1-1有機-無機混成體的製備與性質…………………………54 4-1-2有機-無機混成體之熱分析………………………………60 4-2改變苯乙烯含量下製備有機-無機混成體…………………72 4-2-1有機-無機混成體的製備…………………………………72 4-2-2有機-無機混成體之熱分析………………………………72 4-3結論…………………………………………………………85 第五章總結…………………………………………………………86 參考文獻………………………………………………………………88

    1.Sur, G. S. and Mark, J. E. Eur Polym. J., 21 (1985) 1051
    2.Mark, J. E. and Sur, G. S. Polym. Bull., 14 (1985) 325
    3.Clarson, S. J. and Mark, J. E. Polym. Commun., 28 (1987) 249
    4.Sun, C.-C. and Mark, J. E. Polymer, 30 (1989) 104
    5.Mark, J. E. Chemtech., April (1989) 230
    6.Wung, C. J.; Pang, Y.; Prasad, P. N. and Karasz, F. E. Polymer, 32 (1991) 605
    7.Motakef, S.; Suratwala, T.; Roncone, R. L.; Boulton, J. M.; Teowee, G.; Neilson, G. F. and Uhlmann, D. R. J. Non-Cryst Solids, 178 (1994) 31
    8.Motakef, S.; Suratwala, T.; Roncone, R. L.; Boulton, J. M.; Teowee, G.; Uhlmann, D. R. J. Non-Cryst. Solids, 178 (1994) 37
    9.Yoshida, M. and Prasad, P. N. Appl. Opt., 35 (1996) 1500
    10.Xu, C.; Eldada, L.; Wu, C.; Norwood, R. A.; Shacklette, L. W.; Yardley, J. T. and Wei, Y. Chem. Mater., 8 (1996) 2701
    11.Dave, B. C.; Dunn, B.; Valentine, J. S. and Zink, J. I. Anal. Chem., 66 (1994) 1120
    12.Claude, C.; Garetz, B.; Okamoto, Y. and Tripathy, S. Mater. Lett., 14 (1992) 336
    13.L-Davies, B.; Samoc, M. and Woodruff, M. Chem. Mater., 8 (1996) 2586
    14.Sakka, S.:NEW GLASS, 日刊工業新聞社 (1987) 1
    15.Sakka, S.:NEW GLASS, 3 (1987) 1
    16.Dislich, H.:Angew. Chem. Int. Ed. Engl., 10 (1971) 363
    17.Mazdiyasni, K. S., Dolloff R.T., and Smith, J. S.:J. Amer. Ceram. Soc., 52 (1969) 523
    18.Novak, B. M., Adv. Mater., 5 (1993) 422
    19.Hench, L. L. and West., J. K., Chem. Rev., 90 (1990) 33
    20.Mackenzie, J. D., J. Non-Cryst. Solids, 48 (1982) 1
    21.Brinker, C.J. and Scherer, G. W., J. Non-Crystalline Solids, 70 (1985) 301
    22.Sakka, S.:Treatise on Materials Science and Technology, 22. Glass III, ed. M. Tomozawa and R. Doremus, Academic Press, New York (1982) 129
    23.Brinker, C.J., J. Non-Crystalline Solids, 100 (1988) 31
    24.Aelion, R., Loebel, A. and Eirich, F., Am. Chem. Soc. J., 72 (1950) 124
    25.Aelion, R., Loebel, A. and Eirich, F., Recueil, 69 (1950) 61
    26.Yoldas, B. E., J. Mater. Sci., 14 (1979) 1843
    27.Nogami, M. and Moriya, Y., J. Non-Cryst. Solids, 37 (1980) 191
    28.Klein, L. C. and Garvey, G. J., J. Non-Cryst. Solids, 38 (1980) 39
    29.Makherju, S. P., J. Non-Cryst. Solids, 42 (1980) 477
    30.Partlow, D. P. and Yoldas, B. E., J. Non-Cryst. Solids, 46 (1981) 153
    31.Yoldas, B. E., J. Non-Cryst. Solids, 51 (1982) 105
    32.Paoting, Y., Hsiaoming, L. and Yuguang, W., J. Non-Cryst. Solids, 52 (1982) 511
    33.Schaefer, D.W. and Keefer, K. D., Mater. Res Soc. Symp. Proc., 73 (1986) 277
    34.Pope, E. J. A. and Mackenzie, J. D., J. Non-Crystalline Solids, 87 (1986) 185
    35.Zerda, T. W., Artaki, I. and Jonas, J., J. Non-Crystalline Solids, 81 (1986) 365
    36.Himmel, B., Gerber, T. and Burger, H., J. Non-Crystalline Solids, 91 (1987) 122
    37.Chujo, Y. et al., Makromol. Chem., Macromol. Symp., 42/43 (1991) 303
    38.Chujo, Y., Ihara, E., Kure, S. and Saegusa, T., Macromolecules, 26 (1993) 5681
    39.Landry, C. J. T., Coltrain, B. K. and Brady, B. K., Polymer, 33 (1992) 1486
    40.Landry, C. J. T., Coltrain, B. K., Wesson, J. A., Zumbulyadis, N. and Lippert, J. L., Polymer, 33 (1992) 1496
    41.Chujo, Y., Matsuki, H., Kure, S., Saegusa, T., and Yazawa, T., J. Chem. Soc., Chem. Commun., (1994) 635
    42.Tamaki, R.; Samura, K. and Chujo, Y., Chem. Commun., (1998), 1131
    43.Judeinstein, P. and Sanchez, C., J. Mater. Chem., 6 (1996) 511
    44.Fitzgerald, J. J., Landry, C. J. T., and Pochan, J. M., Macromolecules, 25 (1992) 3715
    45.Pope, E. J. A., Asami, M., and Mackemzie, J. D., J. Mater. Res., 4 (1989) 1018
    46.Mark, J. E. and Sun, C. C., Polym. Bull., 18 (1987) 259
    47.Huang, H. H. and Wilkes, G. L., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem), 28 (1987) 244
    48.Novak, B. M., Ellsworth, M., and Davis, C., Extended Abstracts, Tapan-U.S. Joint Seminar on Inorganic and Organometallic Polymers, (1991) 160
    49.Wei, Y., Wang, W., Teh, J. M., Wang, B., and Murrary, J. K., Adv. Mater., 2 (1994) 337
    50.Wei, Y., Yang, D. C., and Tang, L.G., Makromol. Chem. Rapid Commun., 14 (1993) 273
    51.Wei, Y., Bakthavatchalam, R., and Whitecar, C. K., Chem. Mater., 2 (1990) 337
    52.Huang, Z. H. and Qiu, K. Y., Chem. J. Chin. Universities, 18 (1997) 803
    53.Huang, Z. H. and Qiu, K. Y., Acta Polym. Sin., No.4 (1997) 434
    54.Huang, Z. H. and Qiu, K. Y., Polym. Bull., 35 (1995) 607
    55.Huang, Z. H. and Qiu, K. Y., Polymer, 38 (1997) 521
    56.Huang, Z. H., Qiu, K. Y., Dong, J. H., and Wei, Y., J. Appl. Polym. Sci., 66 (1997) 853
    57.Huang, Z. H., Qiu, K. Y., and Wei, Y., J. Polym. Sci., Part A: Polym. Chem., 35 (1997) 2403
    58.Mascia, L. and Kioul, A., Polymer, 36 (1995) 3649
    59.Wei, Y.; Yang, D.; Tang, L. and Hutchins, M. K., J. Mater. Res., 1993, 8, 1143
    60.Zhou, W., Dong, J. H., Qiu, K. Y., and Wei, Y., J. Polymer Science: Polymer Chemistry, 36 (1998) 1607
    61.Sakurai, K., Douglas, E., and MacKnight, W. J., Macromolecules, 25 (1992) 4506
    62.Sakurai, K., Douglas, E., and MacKnight, W. J., Macromolecules, 26 (1993) 208
    63.Bakeev, K. N., Chugunov, S. A., Teraoka, I., MacKnight W. J., Zezin, A. B., and Kabanov, V. A., Macromolecules, 27(1994) 3926
    64.Bakeev, K. N., Shu, Y. M., MacKnight, W. J., Zezin, A. B., and Kabanov, V. A., Macromolecules, 27 (1994) 300
    65.Ng, C.-W. A., Lindway, M. J., and MacKnight, W. J., Macromolecules, 27 (1994) 3027
    66.Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 27 (1994) 3033
    67.Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 29 (1996) 2421
    68.Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 29 (1996) 2412
    69.Backov, R., Bonnet, B., Jones, D. J., and Rozie''re, J., Mater. Chem., 9 (1997) 1812
    70.Chaneac, C., Tronc, E., and Jolivet, J. P., J. Mater. Chem., 6 (1996) 1905
    71.Clevenger, M. B., Zhao J., and McDevitt J. T., Chem. Mater., 8 (1996) 2693
    72.Fikushima, Y., and Tani M., J. Chem. Soc., Chem. Commun., (1995) 241
    73.Kotov, N. A., Magnov, S., and Tropsha, E., Chem. Mater., 10 (1998) 886
    74.Wang, Z., Lan, T., and Pinnavaia, T. J., Chem. Mater., 8 (1996) 2200
    75.Krishnamoorti, R., Vaia, R. A., and Giannelis, E. P., Chem. Mater., 8 (1996) 1728
    76.Harmer, M. A., Farneth, W. E., Sun, Q., J. Am. Chem. Soc., 118 (1996) 7708
    77.Deng, Q., Hu, Y., Moore, R. B., McCormick, C. L., and Mauritz, K. A., Chem. Mater., 9 (1997) 36
    78.Shi, Y., and Seliskar, C. J., Chem. Mater., 9 (1997) 821
    79.Sun, Q., Harmer, M. A., and Farneth, W. E., Chem. Commun., (1996) 1201
    80.Sauer, J. A., and Hara, M., Adv. Polym. Sci., 91/92 (1990) 69
    81.Tamaki, R. and Chujo, Y. Chem. Mater., 11 (1999) 1719
    82.Tamaki, R., Chujo, Y., Polym. Prepr. Jpn., 47 (1998) 4227
    83.Ellsworth, M. W., Novak, B. M., J. Am. Chem. Soc., 113 (1991) 2756
    84.Tamaki, R., Naka, K., and Chujo, Y., Polymer Journal, 30 (1998) 60
    85.Zarzycki, J., J Sol-Gel Sci Technol , 8 (1997) 17
    86.Mackenzie, J. D., J Sol-Gel Sci Technol, 2 (1994) 81
    87.Mackenzie, J. D., J Sol-Gel Sci Technol, 1 (1993) 7
    88.Tamaki, R., Naka, K., and Chujo, Y., Polymer Bulletin, 39 (1997) 303
    89.Tamaki, R.; Horiguchi, T. and Chujo, Y. Bull. Chem. Soc. Jpn., 71 (1998) 2749
    90.Nell, J. L. W., Wilkes, G. L., and Mohanty, D. K., J. Appl. Polym. Sci., 40 (1990) 1177
    91.Imai, Y., Yoshida, N., and Chujo, Y., Polymer Journal, 31 (1999) 258
    92.Imai, Y., Naka, K., and Chujo, Y., Polymer Journal, 30 (1998) 990
    93.Cicillini, S. A., Calefi, P. S., Neri, C. R., Nassar, E. J., and Serra, O. A., J. Non-Crystalline Solids, 247 (1999) 114
    94.Ellsworth, M.W., Novak, B. M., Chem. Mater., 5 (1993) 839
    95.Tamaki, R. and Chujo, Y. J. Mater. Chem., 8 (1998) 1113
    96.Tamaki, R. and Chujo, Y. App;. Organometal. Chem., 12 (1998) 755

    QR CODE
    :::