| 研究生: |
陳映羽 Ying-Yu Chen |
|---|---|
| 論文名稱: |
以自我複製技術設計及製作低損耗型波導 Design and fabrication of Low Propagation Loss Waveguide Using Autocloning Technique |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 光子晶體 、低損耗 、波導 、自我複製技術 |
| 外文關鍵詞: | Waveguide, Low Propagation Loss, Autocloning, photonic crystal |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以自我複製技術(Autocloning technique)來製作微型化波導,並藉由有限時域差分法(Finite-Difference Time-Domain; FDTD) 來設計微型化波導以及利用電子束直寫技術製作所需的基板圖樣。
首先,使用有限時域差分法模擬自我複製型波導的堆疊方式,比較非對稱膜堆與對稱膜堆、SiO2/Ta2O5與SiO2/TiO2結構、各種週期大小、不同頂角下TE偏振各入射角度傳遞效率的優劣,與文獻中自我複製型波導傳遞效率相比,傳遞損耗下降幅度達76.4%。此外也探討結構核心層及包覆層之等效折射率與各項參數間的相關性。
在製程過程中,利用電子槍蒸鍍系統與離子源助鍍製作自我複製式波導,共37層,其厚度約為9.2 μm。在波長1520 nm~1570 nm,其傳遞損耗為0.1838dB/mm,可應用於通訊紅外光區塊,自我複製技術有著可大量生產且多層製作之特性,微型化波導則有著積體化的前瞻性,未來可望商業化應用於積體平面光路。
In this research, we design and fabrication low propagation loss waveguide using by Autocloning technique. Simulation the design using by Finite-Difference Time-Domain method. Comparison of several structures, such as difference accumulation type, lattice constant, vertex angle, thickness, transverse period, and two kind of heterostructure Ta2O5/SiO2 and TiO2/SiO2, which structure can reduce the Autocloned waveguide propagation loss.
In addition, we comparing the equivalent refractive index between several structures, which has the lower propagation loss and its core and cladding actually has more difference equivalent refractive index. As the result of our design, propagation loss is reduce by over 76.4% compared with the literature.
And we have fabricated the Autocloned waveguide using electron beam gun evaporation with ion-beam-assisted depositon (IAD) successfully. The structure thin film has 37 layers, which physical thickness was 9.2μm. The Autocloned waveguide had low propagation loss about 0.1838dB/mm at 1520-1570 nm in infrared region.
Autocloning technology can be mass production, and multi-layer stack is characteristics of Autocloning technology. Integrated and miniaturization of Autocloned waveguide is forward-looking. In the future, Autocloned integrated waveguide can expected to commercial application.
[1]
S. E. Miller, "Integrated optics: an introduction.", Bell System Technical Journal, vol. 48, 2059-2068 (1969)
[2]
N. Savage, "Linking with Light .", IEEE Spectrum, vol.39, 32-36 (2002)
[3]
E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics.", Physical Review Letter, vol. 58, 2059-2062 (1987)
[4]
S. John, "Strong localization of photons in certain disordered dielectric superlattices.", Physical Review Letter, vol. 58, 2486-2489 (1987)
[5]
欒丕綱、陳啟昌,光子晶體─從蝴蝶翅膀到奈米光子學,第三章,91-100,初版,五南圖書出版公司,台北市,2-31 (2006)
[6]
Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, "Low propagation loss of 0.76 dB/mm in GaAs based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length.", Optics Express, vol. 12, 1090-1096 (2004)
[7]
B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission.", Nature, vol. 420, 650-653 (2002)
[8]
A. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Johnson, “Spatially polarizing autocloned elements.”, Optical Letter, vol. 32, 1935-1937 (2007)
[9]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism Phenomena in Photonic Crystals:Toward Microscale Lightwave Circuits.", Journal of Lightwave Technology, vol. 17, 2032-2038 (1999)
[10]
M. Shirane, A. Gomyo, K. Miura, H. Yamada, S. Kawakami, "Optical directional couplers based on autocloned photonic crystals.", Electronics Letter, vol. 39, 53-54 (2003)
[11]
Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multichannel Photonic Crystal Wavelength Filter Array for Near-Infrared Wavelengths.", Journal of Lightwave Technology, vol. 25, 499-503 (2007)
[12]
M. Shirane, A. Gomyo, K. Miura, Y. Ohtera, H. Yamada, and S. Kawakami, "Optical Add–Drop Multiplexers Based on Autocloned Photonic Crystals.", IEEE Journal on Selected Areas in Communications, vol. 23, 1372-1377 (2005)
[13]
S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3-D Photonic-Crystal Heterostructures: Fabrication and In-Line Resonator.", IEEE Photonics Technology Letter, vol. 15, 816-818 (2003)
[14]
S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, "Fabrication of 3D photonic crystals by autocloning and its applications.", Electronics and Communications in Japan Part II-Electronics, vol.82, 43-52 (1999)
[15]
D. W. Kim, S. H. Kim, S. H. Lee, K. H. Kim, J. M. Lee and E. H. Lee, " A New Method of Measuring Localized Chromatic Dispersion of Structured Nanowaveguide Devices Using White-Light Interferometry.", Journal of microelectromechanical, vol. 21, 43-48, (2012)
[16]
T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney and M. Mansuripur", Multimode Interference-Based Photonic Crystal Waveguide Power Splitter.", Journal of lightwave technology, vol. 22, 2842-2846, (2004)
[17]
S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi and H. Fujita, "Observation of micromechanically controlled tuning of photonic crystal line-defect waveguide.", Applied physics letters, vol. 88, 011104 (2006)
[18]
R. Mudachathi and P. Nair, "Low-Voltage Widely Tunable Photonic Crystal Channel Drop Filter in SOI Wafer.", Journal of lightwave technology, vol. 30, 190-197, (2012)
[19]
B. Cluzel, K. Foubert, Loic Lalouat, E. Picard, D. Peyrade, E. Hadji and F. de Fornel,"Coupling evanescently low loss Silicon-on-insulator (SOI) ridge waveguides(WGs) including high Q nanocavities: for light control.", IEEE, (2011)
[20]
K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, S. Kawakami, "Loss Reduction of Photonic Crystal Waveguide Fabricated by the Autocloning Technology.", Electronics and Communications in Japan Part II-Electronics, vol.88, 10-20 (2005)
[21]
B. Dayal, N. Kitabayashi, T. Miyamoto, and F. Koyama, T. Kawashima and S. Kawakami, "Polarization control of 1.15μm vertical-cavity surface-emitting lasers using autocloned photonic crystal polarizer.", Applied Physics Letter, vol. 91, 041110-041110-3 (2007)
[22]
T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application.", Optical and Quantum Electronics, vol.34, 63-70 (2002)
[23]
Y. Ohtera, H. Ohkubo, K. Miura, T. Sato, T. Kawashima, S. Kawakami, "Waveguide and guided-wave devices consisting of heterostructured photonic crystals.", Optical engineering, vol. 43, 1022-1029, (2004)
[24]
K. Okamoto, "Fundamental of optical waveguides.", Chapter 1, Second Edition, Academic Press, USA, 1-2 (2006)
[25]
J. C. M. Garnett, "Philosophical Transactions of the Royal Society A.", London 203, 385-420 (1904)
[26]
D.A.G. Bruggeman, "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. 1. Dielektrizitӓtskon- stanten und Leitfӓhigkeiten der Mischkӧrper aus isotropen Substanzen.", Annalen der Physik, 5th Series 24, 636-664 (1935)
[27]
D. E. Aspnes, "Local-field effects and effective-middle theory: A microscopic perspective.", American Journal of Physics, vol.50, 704-709 (1982)
[28]
S. Kawakami, T. Kawashima, and T. Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering.", Applied Physics Letter, vol.74, 463-465 (1999)
[29]
S. Tazawa, S. Matsuo, and K. Saito, "A general characterization and simulation method for deposition and etching technology.", IEEE transactions on semiconductor manufacturing, vol. 5, 27-33 (1992).