跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭雋馨
Chuan-hsin Peng
論文名稱: 協力式無人搬運車之軌道佈置
Design of Guided Paths for Tandem AGV Systems
指導教授: 葉英傑
Ying-chieh Yeh
何應欽
Ying-chin Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 總工作量總工作量差異無人搬運車分群方法協力式
外文關鍵詞: total workload, grouping, total workload difference, tandem configuration, AGV systems
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人搬運車是一種具有彈性的物料搬運系統,是在工業界被廣泛應用的自動化物料搬運系統。協力式無人搬運車系統最早是由Bozer與Srinivasan (1989)所提出的,其主要特色為軌道佈置分為幾個區域,且區域間互不交錯,每個區域只有一台AGV,因此車輛的交通控制問題較簡單;缺點則是需要另外考慮在區域間設立轉運站的問題和區域間工作量不平衡的問題。而無人搬運車的軌道佈置設計與工廠的物料搬運效率有很大的相關,甚至影響工廠的生產力。所以本研究將在工廠機器位置已知且固定的情況下,針對協力式無人搬運車系統軌道佈置設計提出一設計方法。
      本研究所提出的方法分為四個部份,分別為分群方法、迴圈軌道連接方法、轉運站設置方法以及改善迴圈設計解。分群方法為在機器位置固定且迴圈數已知的情況下將機器分成數群,接著以迴圈軌道連接方法將分群後的機器連接成互不交錯的迴圈,連接完成後使用轉運站設置方法在迴圈之間設置轉運站,如此便完成一協力式無人搬運車迴圈設計;但此設計還須考量到可接受的總工作量與可接受的總工作量差異,所以若當迴圈設計解不被接受時則需要用到改善迴圈設計解的方法,以滿足可接受的總工作量與可接受的總工作量差異的限制。最後,將以舉例說明的方式使大家能夠更清楚了解本研究所提出的方法,並證明此方法的可行性與績效。


    Tandem Automated Guided Vehicle (AGV) systems are easy-implemented material handling system for warehouse and manufacturing. It requires only a relatively easy traffic control management, e.g., prevention for collision and vehicle dispatching rule, since each loop requires only one vehicle. Moreover, tandem AGV systems offer more flexibility in future expansion since one or more loops could be added in the original system with minimal disruptions.
    In this research, we assume that the machine positions are given and cannot be changed. We propose a method to construct a tandem AGV system for this given configuration. In our method, we provide a way to assign machines to loops, connect guided paths to machines in each loop, choose transfer stations between loops, and find a possible improving design solution from the existing design solution with consideration of two measures, total work loads and total difference of work loads. In the end, we apply our method step by step on an example to show how our method works.

    摘要 i 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4假設環境 3 1.5論文架構 4 第二章 文獻探討 6 2.1 無人搬運車軌道佈置問題 6 2.2 協力式無人搬運車系統問題 10 2.2.1 分區方法 11 2.2.2 工作量計算 12 2.2.3 設置轉運站 14 2.3 路徑軌道設計 15 2.4 負載途程 16 第三章 解題方法 17 3.1解題方法流程 18 3.2機器分群方法 20 3.2.1 分群方法步驟流程舉例說明 22 3.3迴圈軌道連接法 27 3.3.1重心計算方式 27 3.3.2迴圈軌道連接法舉例說明 28 3.3.3重心為機器位置時的軌道連接方法 30 3.4轉運站的設置 34 3.5計算每個迴圈內搬運車的工作量 35 3.5.1迴圈內機器與轉運站的流量關係 35 3.5.2計算迴圈內機器與轉運站的距離關係 37 3.5.3區域工作負載量計算 38 3.5.4計算迴圈設計解的總工作量差異 39 3.6改善迴圈設計解之方法步驟 39 第四章 實例驗證與說明 43 4.1 範例之基本資料 43 4.2機器分群 44 4.2.1設定初始點 44 4.2.2找出種子機器 46 4.2.5分群完成 51 4.3迴圈軌道連接 53 4.3.1計算重心位置 53 4.3.2重心與機器之放射線連接 55 4.3.3軌道連接 56 4.3.4重心為機器位置時的軌道連接方法 57 4.4轉運站設置 59 4.5各迴圈之搬運車工作量計算 62 4.6改善迴圈設計解 67 第五章 結論與後續研究 70 5.1結論 70 5.2後續研究建議 71 參考文獻 72 附錄A 76 附錄B 81 附錄C 88

    1. 黎士賢,1998,『網路式移動區域控制無人搬運車系統』,國立中央大學工業管理研究所碩士論文。
    2. 陳德祥,1999,『協力式無人搬運車系統之設計方法』,國立中央大學工業管理研究所碩士論文。
    3. 謝秉峰,2000,『多載量AGV在協力式無人搬運車系統上的設計』,國立中央大學工業管理研究所碩士論文。
    4. 許晏誠,2008,『協力式無人搬運車系統之派車問題探討』,國立中央大學工業管理研究所碩士論文。
    5. Bozer, Y. A. and Srinivasan, M. M., 1989, “Tandem configurations for AGV systems offer simplicity and flexibility,” Material Handling System, 21(2), 23-27.
    6. Bozer, Y. A. and Srinivasan, M. M., 1991, “Tandem configurations for automated guided vehicle systems and the analysis of single vehicle loops,” IIE Transactions, 23(1), 72-82.
    7. Bozer, Y. A. and Srinivasan, M. M., 1992, “Tandem AGV systems : A partitioning algorithm and performance comparison with conventional AGV systems”, European Journal of Operational Research, 63, 173-191.
    8. Egbelu, P. J. and Tanchoco, J. M. A., 1986, “Potentials for bi-directional guide-path for automated guided vehicle based systems,” International Journal of Production Research, 24(5), 1075-1097.
    9. Farahani, R. Z. , Laporte, G., Miandoabchi, E. ,and Bina, S., 2008, “Designing efficient methods for the tandem AGV network design problem using tabu search and genetic algorithm,” The International Journal of Advanced Manufacturing Technology, 36, 996-1009.
    10. Gaskins, R. J. and Tanchoco, J. M. A., 1987, “Flow path design for automated guided vehicle systems,” International Journal of Production Research, 25(5), 667-676.
    11. Laporte, G. , Farahani, R. Z. ,and Miandoabchi, E. , 2006, ”Design an efficient method for tandem AGV network design problem using tabu search,” Applied Mathematics and Computation, 183,1410-1421.
    12. Gould, L., 1990, AGVs in America: An inside look. Modern Materials Handling, 45(10), 56-60.
    13. Guzman, M. C. D., Prabhu, N., and Tanchoco, J. M. A., 1997, “Complexity of the AGV shortest path and single-loop guide path layout problems,” International Journal of Production Research, 35(8), 2083-2092.
    14. Ho, Y. C. and Hsieh, P. F., 2004, “A machine-to-loop assignment and layout design methodology for tandem AGV systems with multiple-load vehicles,” International Journal of Production Research, 42(4), 801-832.
    15. Ho, Y. C. and Hsieh, H. W., 2005, “A part-and-tool assignment method for the workload-balance between machines and the minimization of tool-shortage occurrences in an FMS,” International Journal of Production Research, 43(9), , 1831-1860.
    16. Ho, Y. C. and Liao, T. W., 2009, “Zone design and control for vehicle collision prevention and load balancing in a control AGV system,” Computer& Industrial Engineering, 56, 417-432.
    17. Ho, Y. C. and Moodie, Colin L., 1998, “Machine Layout with a Linear Single-Row Flow Path in an Automated Manufacturing System”, Journal of Manufacturing Systems, 17(1), 1-22.
    18. Hsieh, L. F. and Sha, D. Y., 1997, “Heuristic algorithm for the design of facilities layout and AGV routes in tandem AGV systems,” International Journal of Industrial Engineering, 4(1), 52-61.
    19. Huang, C., 1997, “Design of material transportation system for tandem automated guided vehicle systems,” International Journal of Production Research, 35(4), 943-953.
    20. Chae, J. and Peters, B. A., 2006,”A simulated annealing algorithm based on a closed loop layout for facility layout design in flexible manufacturing systems,” International Journal of Production Research, 44(13), 2561-2572.
    21. Kaspi, M. and Tanchoco, J. M. A., 1990, “Optimal flow path design of unidirectional AGV systems,” International Journal of Production Research, 28(6), 1023-1030.
    22. Kim, C. W. and Tanchoco, J. M. A., 1991, “Conflict-free shortest-time bi-directional AGV routing,” International Journal of Production Research, 29(12), 2377–2391.
    23. Ko, K. C. and Egbelu, P. J., 2003, “Unidirectional AGV guide path network design: a heuristic algorithm,” International Journal of Production Research, 41(10), 2325-2343.
    24. Kouvelis, P., Chiang, W. C. and Fitzsimmons, J., 1992, “Simulated annealing for machine layout problems in the presence of zoning constraints,” European Journal of Operational Research, 57(2), 203–223.
    25. Lee, J. and Srisawat, T., 2006, “Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs,” International Journal of Production Research, 44(4), 653-673.
    26. Lin, J. T. and Dgen, P. K., 1994, “An algorithm for routeing control of a tandem automated guided vehicle system,” International Journal of Production Research, 32(12), 2735-2750.
    27. Shalaby, M. A., El Mekkawy, T.Y. and Fahmy, S.A., 2006,” Zones formation algorithm in tandem AGV systems: a comparative study,” International Journal of Production Research , 44(3), 505–521.
    28. Maxwell, W. L. and Muckstadt, J. A., 1982, “Design of automatic guided vehicle systems,” IIE Transactions, 14(2), 114–124.
    29. Tavakkoli-Moghaddam, R. , Aryanezhad, M. B., Kazemipoor, H., and Salehipour A., 2008, “Partitioning machines in tandem AGV systems based on balanced flow strategy by simulated annealing,” The International Journal of Advanced Manufacturing Technology , 38, 355–366.
    30. Sinriech, D. and Tanchoco, J. M. A., 1995, “An introduction to the segmented flow approach for discrete material flow systems,” International Journal of Production Research, 33(12), 3381–3410.
    31. Sinriech, D., Tanchoco, J. M. A. and Herer, Y. T., 1996, “The segmented bi-directional single-loop topology for material flow systems,” IIE Transactions, 28(1), 40-54.
    32. Tanchoco, J. M. A. and Sinriech, D., 1992, “OSL-optimal single loop guided paths for AGVs,” International Journal of Production Research, 30(3), 665-681.

    QR CODE
    :::