跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘岷遠
Min-Yuan Pan
論文名稱: 低負載量之鉑基奈米團簇 應用於析氫反應之研究
The Hydrogen Evolution Reaction Performance of Pt-based Nanoclusters with Low Loading
指導教授: 王冠文
Kuan-Wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 電催化觸媒雙金屬奈米顆粒奈米團簇光化學還原析氫反應計時安培法
外文關鍵詞: electrocatalyst, bimetallic, nanoparticle, nanoclusters, photochemical reduction, hydrogen evolution reaction (HER), chronoamperometry (CA)
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,鉑基觸媒被視為析氫反應(hydrogen evolution reaction, HER)的基準,因為它們在0到14的pH值範圍內表現出出色的活性。然而,高成本,穩定性差以及貴金屬的稀有性限制了它們的廣泛應用。另一方面,未來低碳能源系統的潛在候選人,氫氣,卻大部分均來自蒸汽重整,亦會產生二氧化碳,造成全球暖化。因此,設計低鉑含量且高原子利用率觸媒為實際應用的重要課題。本研究利用改變冷凍光還原法的照光時間,並同時添加第二金屬前驅物,達到一步驟合成雙金屬奈米團簇觸媒。透過旋轉圓盤電極(RDE),分析了低負載量之鉑基奈米觸媒的HER活性,利用感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometry, ICP-OES)、X光繞射儀(X-ray Diffractometer, XRD)、高解析穿透式電子顯微鏡(High-Resolution Transmission Electron Microscopy, HRTEM)以及X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS),去分析化學組成、結構、形貌和表面組成。
    透過HRTEM觀察到經由還原時間的縮減,得到金屬尺寸的縮小,並形成單金屬和雙金屬奈米團簇觸媒。而本研究中雙金屬奈米團簇之觸媒PtPd-A,在HER性能與穩定性為最佳樣品。有最低之Tafel斜率18 mV/dec.、在10 mA / cm2之過電勢(η10)為39 mV,以及最高的質量活性(Mass activity, MA)9.09 A/mg。即使在計時安培分析法(Chronoamperometry Analysis, CA)6小時測試後,不只在Tafel斜率和η10維持不變,並有在MA上仍保持6.17 A/mg的高質量活性。


    Nowadays, platinum-based catalysts are regarded as the benchmark for hydrogen evolution reaction (HER) because they show excellent activity in the pH range of 0 to 14. However, high cost, poor stability, and the rarity of precious metals limit their widespread use. On the other hand, potential resources for low-carbon energy systems in the future, hydrogen, are produced from steam reforming, which results in CO2 emission and causes global warming. Therefore, designing a catalyst with low platinum content and high atomic utilization efficiency is an important topic for practical applications. In this study, iced photochemical reduction with different irradiation time are used, and the second metal precursor are added at the same time to achieve the one-step synthesis of the bimetallic nanocluster catalyst. The rotating disk electrode (RDE) was used to analyze the HER activity of the platinum-based nanocatalyst with low loading. The inductively coupled plasma atomic emission spectrometry (ICP-OES) and X-ray diffraction were used. X-ray Diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS) were used to analyze chemical composition and structure, Morphology, and surface composition of the catalysts, respectively. HRTEM results suggest that when the reduction time is reduced, the size of the metal is reduced, Among all sampes, the best one is the PtPd-A bimetallic nanoclusters which has the lowest Tafel slope of 18 mV/dec., the overpotential (η10) at 10 mA/cm2 is 39 mV, and the highest mass activity (mass activity, MA)of 9.09 A/mg. Even after 6 hours of chronoamperometry analysis (CA) test, not only the Tafel slope and η10 remain unchanged, but also a high MA 6.17 A/mg is achieved.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 HER反應機制 4 1.2 雙金屬效應 6 1.3低鉑之觸媒 9 1.4研究動機 12 第二章 實驗步驟 14 2-1 觸媒之製備 14 2-1.1 製備碳支撐之Pt、PtAu、PtSn、PtPd觸媒 14 2-1.2 製備Pt-A、Pd-A、PtPd-A之觸媒 16 2-2 觸媒之性質 18 2-2.1 感應耦合電漿原子發射光譜儀(ICP-OES) 18 2-2.2 X光繞射分析儀(XRD) 18 2-2.3 高解析穿透式電子顯微鏡(HRTEM) 18 2-2.4 X射線光電子能譜儀(XPS) 19 2-2.5 循環伏安法(Cyclic Voltammetry, CV) 19 2-2.6 電催化析氫反應(HER) 20 2.2.8計時安培分析法(Chronoamperometry Analysis, CA) 20 第三章 結果與討論 22 3-1 觸媒之性質結構分析 22 3-1.1 ICP-OES與XRD之元素組成與相結構鑑定 22 3-1.2 HRTEM形貌分析 22 3-1.3 XPS表面組成分析 26 3-2 觸媒析氫反應之性能分析 31 3-2.1 CV之性質 31 3-2.2 LSV之性能分析 31 3-2.3 CA之穩定度測試 36 3.3 總結 37 第四章 結論 44 參考文獻 45

    1. Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L., Nano Energy 2017, 37, 136-157.
    2. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W., Nature Materials 2005, 4 (5), 366-377.
    3. Zang, W. J.; Kou, Z. K.; Pennycook, S. J.; Wang, J., Advanced Energy Materials 2020, 10 (9).
    4. Lewis, N. S.; Nocera, D. G., Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (43), 15729-15735.
    5. REN21; Renewables 2018 Global Status Report,
    取自:http://www.ren21.net/about-ren21/about-us/, 2018.
    6. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y., Chemical Reviews 2020, 120 (2), 851-918.
    7. Climate Central: Global Temperatures and CO2 Concentrations (2020) ;Published: February 19th, 2020
    8. International Energy Agency : CO2 Emissions from Fuel Combustion 2019 Highlights;Published:15 November 2019
    9. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V., The hydrogen economy., Physics Today 2004, 57 (12), 39-44.
    10. Yu, K. M. K.; Tong, W. Y.; West, A.; Cheung, K.; Li, T.; Smith, G.; Guo, Y. L.; Tsang, S. C. E., Nature Communications 2012, 3.
    11. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.;Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M., Science 2011, 334 (6060), 1256-1260.
    12. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Nature Materials 2012, 11 (6), 550-557.
    13. Bard, A. J.; Fox, M. A., Accounts of Chemical Research 1995, 28 (3), 141-145.
    14. Faber, M. S.; Jin, S.,Energy & Environmental Science 2014, 7 (11), 3519-3542.
    15. Tan, Y. W.; Wang, H.; Liu, P.; Shen, Y. H.; Cheng, C.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W., Energy & Environmental Science 2016, 9 (7), 2257-2261.
    16. Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W., Advanced Energy Materials 2016, 6 (6).
    17. Chen, X. C.; Yu, Z. X.; Wei, L.; Zhou, Z.; Zhai, S. L.; Chen, J. S.; Wang, Y. Q.; Huang, Q. W.; Karahan, H. E.; Liao, X. Z.; Chen, Y., Journal of Materials Chemistry A 2019, 7 (2), 764-774.
    18. Shi, Y. M.; Zhang, B., Chemical Society Reviews 2016, 45 (6), 1529-1541.
    19. Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z., Angewandte Chemie-International Edition 2015, 54 (1), 52-65.
    20. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E., Journal of the American Chemical Society 2013, 135 (25), 9267-9270.
    21. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J., Journal of the American Chemical Society 2011, 133 (19), 7296-7299.
    22. Tang, C.; Gan, L. F.; Zhang, R.; Lu, W. B.; Jiang, X. E.; Asir, A. M.; Sun, X. P.; Wang, J.; Chen, L., Nano Letters 2016, 16 (10), 6617-6621.
    23. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z., Nature Communications 2014, 5.
    24. Xu, G. R.; Hui, J. J.; Huang, T.; Chen, Y.; Lee, J. M., Journal of Power Sources 2015, 285, 393-399.
    25. Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J., Angewandte Chemie-International Edition 2017, 56 (44), 13694-13698.
    26. Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M., Angewandte Chemie-International Edition 2016, 55 (6), 2230-2234.
    27. He, L.; Huang, Y. Q.; Wang, A. Q.; Wang, X. D.; Chen, X. W.; Angewandte Chemie-International Edition 2012, 51 (25), 6191-6194.
    28. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E., Angewandte Chemie-International Edition 2014, 53 (21), 5427-5430.
    29. Adhikari, R.; Basu, K.; Zhou, Y. F.; Vetrone, F.; Ma, D. L.; Sun, S. H.; Vidal, F.; Zhao, H. G.; Rosei, F., Journal of Materials Chemistry A 2018, 6 (16), 6822-6829.
    30. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L., Chemical Society Reviews 2014, 43 (18), 6555-6569.
    31. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; ee, W. G.; Yoon, T.; Kim, K. S., Acs Catalysis 2017, 7 (10), 7196-7225.
    32. Murthy, A. P.; Madhavan, J.; Murugan, K., Journal of Power Sources 2018, 398, 9-26.
    33. Norskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Norskov, J. K., Journal of the Electrochemical Society 2005, 152 (3), J23-J26.
    34. Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J., Nano Energy 2019, 58, 244-276.
    35. Zeng, M.; Li, Y. G., Journal of Materials Chemistry A 2015, 3 (29), 14942-14962.
    36. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Norskov, J. K., Nature Materials 2006, 5 (11), 909-913.
    37. Sinfelt, J. H. Acc. Chem. Res. 1977, 10, 15.
    38. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M., Science 2007, 315 (5811), 493-497.
    39. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R., Science 2007, 315 (5809), 220-222.
    40. Lai, J. P.; Guo, S. J., Small 2017, 13 (48).
    41. Yu, W. T.; Porosoff, M. D.; Chen, J. G. G., Chemical Reviews 2012, 112 (11), 5780-5817.
    42. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N., Science 2015, 349 (6246), 412-416.
    43. Choi, W.; Hu, G. X.; Kwak, K.; Kim, M.; Jiang, D. E.; Choi, J. P.; Lee, D., Acs Applied Materials & Interfaces 2018, 10 (51), 44645-44653
    44. Lv, H.; Chen, X.; Xu, D. D.; Hu, Y. C.; Zheng, H. Q.; Suib, S. L.; Liu, B., Applied Catalysis B-Environmental 2018, 238, 525-532
    45. Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M.; Botton, G. A.; Sun, X. L., Nature Communications 2016, 7.
    46. Seh, Z. W.;Kibsgaard, J.;Dickens, C. F.;Chorkendorff, I. B.; Norskov, J. K.;Jaramillo, T. F., Science 2017, 355 (6321).
    47. Zhang, L.;Doyle-Davis, K.;Sun, X. L., Energy & Environmental Science 2019, 12 (2), 492-517.
    48. Li, X.; Yu, J. Y.; Jia, J.; Wang, A. Z.; Zhao, L. L.; Xiong, T. L.; Liu, H.; Zhou, W. J., Nano Energy 2019, 62, 127-135.
    49. Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M., Nature Reviews Chemistry 2018, 2 (1).
    50. Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Kral, P.; Matsudaira, P.; Mirsaidov, U., Nature Chemistry 2017, 9 (1), 77-82.
    51. Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T., Angewandte Chemie-International Edition 2006, 45 (3), 407-411.
    52. Newman, J. D. S.; Blanchard, G. J., Langmuir 2006, 22 (13), 5882-5887.
    53. Bard, A.J.; Faulkner, L.R. (2001). Electrochemical Methods. Fundamentals and Applications (2nd ed.).
    54. Li, D. B.; Li, X. Y.; Chen, S. M.; Yang, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H.; Ajayan, P. M.; Luo, Y.; Jiang, J.; Song, L., Nature Energy 2019, 4 (6), 512-518.
    55. Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J.; Banis, M. N.; Li, R. Y.; Sham, T. K.; Gu, M.; Liu, L. M.; Botton, G. A.; Sun, X. L., Nature Communications 2019, 10.
    56. Tang, K.; Wang, X. F.; Li, Q.; Yan, C. L., Advanced Materials 2018, 30 (7).
    57. Anantharaj, S.; Karthik, P. E.; Subramanian, B.; Kundu, S., Acs Catalysis 2016, 6 (7), 4660-4672.
    58. Liu, W. P.; Ji, J.; Yan, X. C.; Liu, W. B.; Huang, Y. C.; Wang, K.; Jin, P.; Yao, X. D.; Jiang, J. Z., Journal of Materials Chemistry A 2020, 8 (10), 5255-5262.
    59. Pan, X. X.; Lu, S. L.; Zhang, D.; Zhang, Y.; Duan, F.; Zhu, H.; Gu, H. W.; Wang, S.; Du, M. L., Journal of Materials Chemistry A 2020, 8 (9), 4911-4919.
    60. Song, H. J.; Sung, M. C.; Yoon, H.; Ju, B.; Kim, D. W., Advanced Science 2019, 6 (8).
    61. Zhang, H. B.; An, P. F.; Zhou, W.; Guan, B. Y.; Zhang, P.; Dong, J. C.; Lou, X. W., Science Advances 2018, 4 (1).
    62. Tavakkoli, M.; Holmberg, N.; Kronberg, R.; Jiang, H.; Sainio, J.; Kauppinen, E. I.; Kallio, T.; Laasonen, K., Acs Catalysis 2017, 7 (5), 3121-3130.

    QR CODE
    :::