跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林映苓
Ing-Ling Lin
論文名稱: 電腦模擬輔助學習中「人機互動」對認知負荷、學習歷程與學習成效的影響
Effects of interactivity on cognitive load, learning process, and learning performance within a simulation based learning environment
指導教授: 劉子鍵
Tzu-Chien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 文學院 - 學習與教學研究所
Graduate Institute of Learning and Instruction
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 電腦模擬認知負荷互動互動程度學習歷程學習成效
外文關鍵詞: simulation based computer-assisted learning, Cognitive Load Theory, interactivity, degree of interactivity, learning process, learning performance
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電腦模擬輔助學習環境中,透過操作來互動是不可或缺的要素。在互動的過程裡,學習者可藉由觀察模擬的變化而了解學習概念,又或從多重表徵之間獲得概念的連結。雖然文獻普遍認為互動能夠讓學習者主動學習,進而有機會主動建構或產生更深刻的理解。然而,過去有關互動的實證研究結果混合而不一致,更多研究者認為互動背後的認知扮演重要的角色。儘管如此,過去實證研究探討的互動往往跨越不同的學習介面(圖片、動畫),或跨越不同互動類別(回饋、操作、點擊),不同互動方式本身所隱含的背後認知可能早已混合在研究結果之中。因此,互動一定是有效的學習嗎?或許應該以更一致的立基點來加以比較。是以,本研究欲探討在電腦模擬環境中,「有無互動」(行為層面)和「互動程度」(認知層面)對學習產生的影響,並從認知負荷的觀點加以檢視,認為當給予學習者愈大的互動程度(提升有效主動思考的可能性),則愈能使學習者涉入於學習活動當中,產生增生負荷並獲得更佳的學習成效。本研究採用單因子實驗設計,以台灣北部88名高一學生作為受試者,將學習者隨機分派至「無互動」、「低互動」與「高互動」的教材版本,並於學習後給予認知負荷量表及學習測驗(表徵測驗與理解測驗)。分析結果發現:(1)在「有無互動」的比較中,有互動在學習階段所花的時間有高於無互動的趨勢,有互動在理解測驗的時間則有低於無互動的趨勢,不過在認知負荷與學習成效方面,則無統計顯著差異。(2)在「互動程度」的比較中,低互動在學習階段的認知負荷顯著低於高互動,教學效能亦顯著高於高互動,不過在學習成效、測驗階段認知負荷、學習時間方面則未達統計顯著差異。是以,本研究將依據各項研究結果提出討論與建議,期許可作為未來在電腦模擬環境中互動學習之參考。


    Simulation based learning environment is a typical interactive learning environment. When learning with simulation, students learn concepts by observing changes, or receiving immediate feedback among multiple representations (e.g., the arrangement of data points) when they change the variable value (e.g., r value). Although it is a general viewpoint that the interactive processes have the potential benefits for learning, there is no consistent result showing its effectiveness across the past studies. Cognitive process behind the results is considered to be a possible reason for the uncertainty of the effectiveness of the interactivity under the simulation based learning environment. Nevertheless, previous empirical research had acrossed different interface (e.g., picture, animation), and different types of interactive behaviors (e.g., feedback, manipulation, & click), which might refer to mix different cognitive processes in the results Therefore, is interactivity effective for student’s learning? Maybe we should base on more consistent standpoint to make the comparation and answer this question. In this study, the researcher wants to examine which one is more important for learning between “interactivity and non-interactivity” (behavior) and “degree of interactivity” (cognition)? From the perspective of Cognitive Load Theory (CLT), the increase of interactivity might be a way to enhance germane cognitive load, which induces learners to directly invest their cognitive efforts on the most essential elements of the leaning material, and thus promotes more opportunities for getting learners involved into active genuine learning process. Therefore, it is expected that learners will produce more cognitive load but better learning performance with the increasing interactivity. In this study, single between-subject experimental design was conducted to explore this issue. The subjects were randomly assigned to “non-interactivity’’, “low-interactivity’’, and “high- interactivity” conditions. Besides, concepts about Correlation were used as the learning topic. In the results, the researcher found that for the “interactivity and non- interactivity” conditions, interactivity group had a tendency to spend more time on learning, but to spend less time on comprehension test. For the “degree of interactivity” conditions, low-interactivity group had higher cognitive load on learning process, and higher learning efficiency than high-interactivity group. Finally, the implications of the research findings and the design of simulation learning environments are discussed.

    目次 摘要................................................................................................................................ 2 目次................................................................................................................................. i 圖目次............................................................................................................................ ii 表目次.......................................................................................................................... iii 一、緒 論...................................................................................................................... 1 1-1 研究背景與動機 ............................................................................................ 1 1-2 研究目的與待答問題 .................................................................................... 4 1-3 名詞釋義 ........................................................................................................ 4 二、 文獻探討........................................................................................................ 7 2-1 電腦模擬輔助學習及相關文獻探討 ............................................................. 7 2-2 互動式學習環境及其成效 ........................................................................... 11 2-3 認知負荷理論及相關文獻探討 ................................................................... 21 2-4 研究假設 ....................................................................................................... 27 三、研究方法與設計.................................................................................................. 30 3-1 研究架構 ....................................................................................................... 30 3-2 研究對象 ....................................................................................................... 30 3-3 研究設計 ....................................................................................................... 31 3-4 研究教材 ....................................................................................................... 32 3-5 研究步驟 ....................................................................................................... 38 3-6 資料分析 ....................................................................................................... 42 四、資料分析結果...................................................................................................... 46 4-1「有無互動」之事前比較結果分析 ............................................................ 46 4-2「互動程度」之事前比較結果分析 ............................................................ 47 五、討 論.................................................................................................................... 53 5-1「有無互動」對學習者的認知負荷、學習歷程與學習成效之影響 ........ 53 5-2「互動程度」對學習者的認知負荷、學習歷程與學習成效之影響 ........ 55 六、結論與建議.......................................................................................................... 60 6-1 研究結論 ....................................................................................................... 60 6-2 研究限制與建議 ........................................................................................... 63 6-3 未來建議 ....................................................................................................... 64 參考文獻...................................................................................................................... 66

    一、中文文獻
    林怡均(2012)。認知負荷理論的應用與省思:優化電腦模擬輔助學習之介面設
    計與認知支持的系列研究(未出版之博士論文)。國立中央大學,桃園縣。
    林振欽、洪振方(2008)。國中學生電腦模擬單擺建模歷程個案研究。高雄師大
    學報,25,1-24。
    洪振方(2003)。探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學
    報,15,641-662。
    劉子鍵、林怡均(2011)。發展二階段診斷工具探討學生之統計迷思概念:以「相
    關」為例。教育心理學報,42,379-400。
    顏弘志(2004)。從建構主義看探究教學。科學教育研究與發展季刊,36,1-14。
    二、英文文獻
    Ainsworth, S. (1999). The functions of multiple representations. Computers &
    Education, 33(2), 131-152.
    Ayres, P., Marcus, N., Chan, C., & Qian, N. (2009). Learning hand manipulative
    tasks:When instructional animations are superior to equivalent static
    representations. Computers in Human Behavior, 25(2), 348-353.
    Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
    Bell, R. L., & Trundle, K. C. (2008). The use of a computer simulation to promote
    scientific conceptions of moon phases. Journal of Research in Science Teaching,
    45(3), 346-372.
    Blake, C., & Scanlon, E. (2007). Reconsidering simulations in science education at a
    distance: features of effective use. Journal of Computer Assisted Learning, 23(6),
    491-502.
    Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active integration
    of information during learning with dynamic and interactive visualisations.
    Learning and Instruction, 14(3), 325-341.
    Boucheix, J. M., & Schneider, E. (2009). Static and animated presentations in
    learning dynamic mechanical systems. Learning and Instruction, 19(2), 112-127.
    Cairncross, S., & Mannion, M. (2001). Interactive multimedia and learning: Realizing
    the benefits. Innovations in education and teaching international, 38(2),
    156-164.
    Carlson, R. A., Lundy, D. H., & Schneider, W. (1992). Strategy guidance and
    67
    memory aiding in learning a problem-solving skill. Human Factors: The Journal
    of the Human Factors and Ergonomics Society, 34(2), 129-145.
    Chen, Y. L., Hong, Y. R., Sung, Y. T., & Chang, K. E. (2011). Efficacy of simulationbased
    learning of electronics using visualization and manipulation. Educational
    Technology & Society, 14(2), 269-277.
    Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect:
    Is the reduction of extraneous cognitive load accompanied by an increase in
    germane cognitive load? Computers in Human Behavior, 25(2), 315-324.
    Deubel, P. (2003). An investigation of behaviorist and cognitive approaches to
    instructional design. Journal of Educational Multimedia and Hypermedia, 12(1),
    63-90.
    de Jong, T. (2006). Technological advances in inquiry learning. Science, 312(5773),
    532–533.
    de Jong, T. (2010). Cognitive load theory, educational research, and instructional
    design: some food for thought. Instructional Science, 38(2), 105-134.
    de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with
    computer simulations of conceptual domains. Review of educational research,
    68(2), 179-201.
    de Jong, T., van Joolingen, W. R., Swaak, J., Veermans, K., Limbach, R., King, S., &
    Gureghian, D. (1998). Self‐directed learning in simulation‐based discovery
    environments. Journal of Computer Assisted Learning, 14(3), 235-246.
    Evans, C., & Gibbons, N. J. (2007). The interactivity effect in multimedia learning.
    Computers & Education, 49(4), 1147-1160.
    Gentry, J. W. (1990). What is experiential learning? In J. W. Gentry (Ed.), Guide to
    business gaining and experiential learning (pp. 9-20). London: Kogan Page.
    Gerjets, P., & Scheiter, K. (2003). Goal configurations and processing strategies as
    moderators between instructional design and cognitive load: Evidence from
    hypertext-based instruction. Educational Psychologist, 38(1), 33-41.
    Gerjets, P., Scheiter, K., & Catrambone, R. (2006). Can learning from molar and
    modular worked examples be enhanced by providing instructional explanations
    and prompting self-explanations? Learning and Instruction, 16(2), 104-121.
    Govaere Jan, L., de Kruif, A., &Valcke, M. (2011). Differential impact of unguided
    versus guided use of a multimedia introduction to equine obstetrics in veterinary
    education. Computers & Education, 58(4), 1076-1084.
    Hannafin, M., & Hannafin, K. (2008). Cognition and student-centered, Web-based
    learning: Issues and implications for research and theory. In D. G. Kinshuk, J. M.
    Sampson, P. Spector, D. Isaı´as, & D. Ifenthaler (Eds.), Proceedings of the
    IADIS international conference on cognition and exploratory learning in the
    68
    digital age (pp. 113-120). Freiburg, Germany: IADIS.
    Hannafin, M., & Hannafin, K. (2008, February). Cognition and student-centered,
    web-based learning: issues and implications for research and theory. Presented at
    the International Conference on Cognition and Exploratory Learning in Digital
    Age, Freiburg, Germany.
    Hannafin, M., Hannafin, K., & Gabbitas, B. (2009). Re-examining cognition during
    student-centered, web-based learning. Educational Technology Research and
    Development, 57(6), 767-785.
    Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult
    questions. Learning and Instruction, 14(3), 343-351.
    Huk, T., & Ludwigs, S. (2009). Combining cognitive and affective support in order to
    promote learning. Learning and Instruction, 19(6), 495-505.
    Jackson, S. L., Stratford, S. J., Krajcik, J., &Soloway, E. (1996). A learner-centered
    tool for students building models. Communication of the ACM, 39(4), 48-49.
    Kalyuga, S. (2007). Enhancing instructional efficiency of interactive e-learning
    environments: A cognitive load perspective. Educational Psychology
    Review,19(3), 387-399.
    Kalyuga, S. (2009). Instructional designs for the development of transferable
    knowledge and skills: A cognitive load perspective. Computers in Human
    Behavior, 25(2), 332-338.
    Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal
    effect. Educational Psychologist, 38(1), 23-31.
    Khalil, M., Paas, F., Johnson, T., & Payer, A. (2005). Interactive and dynamic
    visualizations in teaching and learning of anatomy: A Cognitive. Wiley-Liss, Inc.
    Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during
    instruction does not work: An analysis of the failure of constructivist, discovery,
    problem-based, experiential, and inquiry-based teaching. Educational
    Psychologist, 41(2), 75-86.
    Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in
    experiments with Cognitive Tutors. Educational Psychology Review, 19(3),
    239-264.
    Kolloffel, B., Eysink, T. H. S., de Jong, T., & Wilhelm, P. (2009). The effects of
    representational format on learning combinatorics from an interactive
    computer-simulation. Instructional Science, 37(6), 503–517.
    Kolloffel, B., Eysink, T. H. S., & de Jong, T. (2010). The influence of learnergenerated
    domain representations on learning combinatorics and probability
    theory. Computers in Human Behavior, 26(1), 1-11.
    Lazonder, A. W., Wilhelm, P., & Hagemans, M. G. (2008). The influence of domain
    69
    knowledge on strategy use during simulation-based inquiry learning. Learning
    and Instruction, 18(6), 580-592.
    Lazonder, A. W., Wilhelm, P., & van Lieburg, E. (2009). Unraveling the influence of
    domain knowledge during simulation-based inquiry learning. Instructional
    Science, 37(5), 437-451.
    Lazonder, A. W., Hagemans, M. G., & de Jong, T. (2010). Offering and discovering
    domain information in simulation-based inquiry learning. Learning and
    Instruction, 20(6), 511-520.
    Leahy, W., & Sweller, J. (2008). The imagination effect increases with an increased
    intrinsic cognitive load. Applied cognitive psychology, 22(2), 273-283.
    Leahy, W., &Sweller, J. (2011). Cognitive load theory, modality of presentation and
    the transient information effect. Applied Cognitive Psychology, 25(6), 943-951.
    Limón, M. (2001). On the cognitive conflict as an instructional strategy for
    conceptual change: a critical appraisal. Learning and Instruction, 11(4), 357-380.
    Liu, T. C. (2010). Developing Simulation-based Computer Assisted Learning to
    Correct Students' Statistical Misconceptions based on Cognitive Conflict Theory,
    using "Correlation" as an Example. Educational Technology & Society, 13 (2),
    180-192.
    Liu, Y., & Shrum, L. J. (2002). What is interactivity and is it always such a good
    thing? Implications of definition, person, and situation for the influence of
    interactivity on advertising effectiveness. Journal of Advertising, 31(4):53-64.
    Liu, T. C., Lin, Y. C., & Kinshuk (2010). The application of Simulation-Assisted
    Learning Statistics (SALS) for correcting misconceptions and improving
    understanding of correlation. Journal of Computer Assist Learning, 26(2),
    143-158.
    Liu, T. C., Kinshuk, Lin, Y. C., & Wang, S. H. (2012). Can verbalisers learn as well as
    visualisers in simulation-based CAL with predominantly visual representations
    Preliminary evidence from a pilot study. British Journal of Educational
    Technology, 43(6), 965-980.
    Liu, T. C., Lin, Y. C., Tsai, M. J., & Paas, F. (2012). Split-attention and redundancy
    effects on mobile learning in physical environments. Computers & Education,
    58(1), 172-180.
    Löhner, S., van Joolingen, W. R., Savelsbergh, E. R., & van Hout-Wolters, B. (2005).
    Students’ reasoning during modeling in an inquiry learning environment.
    Computers in Human Behavior, 21(3), 441-461.
    Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions?
    Educational psychologist, 32(1), 1-19.
    Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.
    70
    Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery
    learning? The case for guided methods of instruction. American Psychologist,
    59(1), 14- 19.
    Mayer, R. E., & Chandler, P. (2001). When learning is just a click away: Does simple
    user interaction foster deeper understanding of multimedia messages? Journal of
    educational psychology, 93(2), 390-397.
    Mayer, R. E. (2002). Cognitive theory and the design of multimedia instruction: An
    example of the twoway street between cognition and instruction. New Directions
    for Teaching and Learning, 89, 55-71.
    Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in
    multimedia learning. Educational psychologist, 38(1), 43-52.
    McCombs, B., & Vakili, D. (2005).A learner-centered framework for e-learning. The
    Teachers College Record, 107(8), 1582-1600.
    Moore, M. G. (1989). Three types of interaction. The American Journal of Distance
    Education, 3(2), 1-6.
    Moris, E. (2001). The design and evaluation of link: A computer based learning
    system for correlation. British Journal of Educational Technology, 32(1), 39-52.
    Moreno, R. (2006). Learning with high-tech and multimedia environments. Current
    Directions in Psychological Science, 15(2), 63-67.
    Mayer, R. & Moreno, R. (2010). Techniques that reduce extraneous cognitive load
    and manage intrinsic cognitive load during multimedia learning. New York:
    Cambridge University Press.
    Moreno, R., & Mayer, R. E. (2005).Role of guidance, reflection, and interactivity in
    an agent-based multimedia game. Journal of Educational Psychology, 97(1),
    117-128.
    Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments:
    Special issue on interactive learning environments: Contemporary issues and
    trends. Educational Psychology Review, 19(3), 309-326.
    Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social
    agency in computer-based teaching: Do students learn more deeply when they
    interact with animated pedagogical agents? Cognition and Instruction, 19(2),
    177-213.
    Moreno, R., & Valdez, A. (2005). Cognitive load and learning effects of having
    students organize pictures and words in multimedia environments: The role of
    student interactivity and feedback. Educational Technology Research and
    Development, 53(3), 35-45.
    Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2011). Comparing two types of
    model progression in an inquiry learning environment with modelling facilities.
    71
    Learning and Instruction, 21(5), 614-624.
    Njoo, M., & de Jong, T. (1993). Exploratory learning with a computer simulation for
    control theory: Learning processes and instructional support. Journal of
    Research in Science Teaching, 30(8), 821-844.
    Norman, D. A., & Spohrer, J. C. (1996). Learner-centered education.
    Communications of the ACM, 39(4), 24-27.
    Paas, F., Renkl, A., &Sweller, J. (2003). Cognitive load theory and instructional
    design: Recent developments. Educational Psychologist, 38(1), 1-4.
    Paas, F., & Van Gog, T. (2006). Optimising worked example instruction: Different
    ways to increase germane cognitive load. Learning and Instruction, 16(2), 87-91.
    Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1993). The efficiency of instructional
    conditions: An approach to combine mental effort and performance measures.
    Human Factors: The Journal of the Human Factors and Ergonomics Society,
    35(4), 737-743.
    Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994).Variability of worked examples
    and transfer of geometrical problem-solving skills: A cognitive-load approach.
    Journal of educational psychology, 86(1), 122-133.
    Paas, F., Tuovinen, J. E., Van Merrienboer, J. J. G., &AubteenDarabi, A. (2005). A
    motivational perspective on the relation between mental effort and performance:
    Optimizing learner involvement in instruction. Educational Technology
    Research and Development, 53(3), 25-34.
    Rasch, T., &Schnotz, W. (2009). Interactive and non-interactive pictures in
    multimedia learning environments: Effects on learning outcomes and learning
    efficiency. Learning and Instruction, 19(5), 411-422.
    Regan, M., & Sheppard, S. (1996). Interactive Multimedia Courseware and Hands-on
    Learning Experience: An Assessment Study. Journal of Engineering Education,
    85(2), 123-130.
    Renkl, A., & Atkinson, R. K. (2007). Interactive learning environments:
    Contemporary issues and trends. An introduction to the Special Issue.
    Educational Psychology Review, 19, 235-238.
    Plass, J. L., Homer, B., & Hayward, E. O. (2009). Design factors for educationally
    effective animations and simulations. Journal of Computing in Higher Education,
    21, 31-61
    Reed, S. K. (2006). Cognitive architectures for multimedia learning. Educational
    Psychologist,41(2), 87–98.
    Richards, D. (2006, December). Is interactivity actually important? Proceedings of
    the Third Australasian Conference on Interactive Entertainment (IE’2006). Perth:
    Murdoch University
    72
    Rogers, Y., & Scaife, M. (1998). How can interactive multimedia facilitate learning?
    In Lee, J. (ed.) Intelligence and Multimodality in Multimedia Interfaces:
    Research and Applications. AAAI. Press: Menlo Park, CA.
    Sabry, K., & Baldwin, L. (2003). Web‐based learning interaction and learning styles.
    British Journal of Educational Technology, 34(4), 443-454.
    Scalise, K., Timms, M., Moorjani, A., Clark, L. K., Holtermann, K., & Irvin, P. S.
    (2011). Student learning in science simulations: Design features that promote
    learning gains. Journal of Research in Science Teaching, 48(9), 1050-1078.
    Schnotz, W. (2002). Commentary: Towards an integrated view of learning from text
    and visual displays. Educational Psychology Review, 14(1), 101-120.
    Schnotz, W., & Rasch, T. (2005). Enabling, facilitating, and inhibiting effects of
    animations in multimedia learning: Why reduction of cognitive load can have
    negative results on learning. Educational Technology Research and Development,
    53(3), 47-58.
    Schüler, A., Scheiter, K., Rummer, R., & Gerjets, P. (2012). Explaining the modality
    effect in multimedia learning: Is it due to a lack of temporal contiguity with
    written text and pictures? Learning and Instruction, 22(2), 92-102.
    She, H. C., & Chen, Y. Z. (2009). The impact of multimedia effect on science
    learning: Evidence from eye movements. Computers & Education, 53(4),
    1297-1307.
    Shellman, S. M., & Turan, K. (2006). Do simulations enhance student learning? An
    empirical evaluation of an IR simulation. Journal of Political Science Education,
    2(1), 19-32.
    Sims, R. (1997). Interactivity: A forgotten art? Computers in Human Behavior, 13(2),
    157-180.
    Smith, S. M., & Woody, P. C. (2000). Interactive effect of multimedia instruction and
    learning styles. Teaching of Psychology, 27(3), 220-223.
    Stull, A. T., & Mayer, R. E. (2007). Learning by doing versus learning by viewing:
    Three experimental comparisons of learner-generated versus author-provided
    graphic organizers. Journal of educational psychology, 99(4), 808-820.
    Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane
    cognitive load. Educational Psychology Review, 22(2), 123-138.
    Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive
    architecture and instructional design. Educational Psychology Review, 10(3),
    251-296.
    Van Joolingen, W. (1998). Cognitive tools for discovery learning. International
    Journal of Artificial Intelligence in Education (IJAIED), 10, 385-397.
    van Merrienboer, J. J. G., Kester, L., & Paas, F. (2006). Teaching complex rather than
    73
    simple tasks:Balancing intrinsic and germane load to enhance transfer of learning.
    Applied CognitivePsychology, 20, 343–352.
    Van Joolingen, W., De Jong, T., & Dimitrakopoulou, A. (2007). Issues in computer
    supported inquiry learning in science. Journal of Computer Assisted Learning,
    23(2), 111-119.
    Van der Meij, J., & de Jong, T. (2011). The effects of directive self-explanation
    promptsto support active processing of multiple representations in a
    simulation-based learning environment. Journal of Computer Assisted Learning,
    27(5), 411-423.
    Van der Meij, J., & de Jong, T. (2006). Supporting students’ learning with multiple
    representations in a dynamic simulation-based learning environment. Learning
    and Instruction, 16(3), 199-212.
    Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex
    learning: Recent developments and future directions. Educational Psychology
    Review, 17(2), 147-177.
    Varma, K., Husic, F., & Linn, M. C. (2008). Targeted support for using technologyenhanced
    science inquiry modules. Journal of Science Education and
    Technology, 17(4), 341-356.
    Verhoeven, L., Schnotz, W., & Paas, F. (2009). Cognitive load in interactive
    knowledge construction. Learning and Instruction, 19(5), 369-375.
    Vogel-Walcutt, J. J., Gebrim, J. B., Bowers, C., Carper, T. M., & Nicholson, D.
    (2010). Cognitive load theory vs. constructivist approaches: which best leads to
    efficient deep learning? Journal of Computer Assisted Learning: 27(2), 133-145.
    Wang, P. Y., Vaughn, B. K., & Liu, M. (2011). The impact of animation interactivity
    on novices’ learning of introductory statistics. Computers & Education, 56(1),
    300-311.
    Zacharia, Z., & Anderson, O. R. (2003). The effects of an interactive computer-based
    simulation prior to performing a laboratory inquiry-based experiment on students’
    conceptual understanding of physics. American Journal of Physics, 71(6), 618-
    62

    QR CODE
    :::