| 研究生: |
黃惠君 Hua-Jing Huang |
|---|---|
| 論文名稱: |
積雲參數化對台灣地區降雨模擬的影響 |
| 指導教授: |
禚漢如
Han-Ru Cho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 積雲參數化 、降雨模擬 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
各積雲參數化方案,在天氣模擬上各有其長處及短處,再加上台灣地區錯綜複雜的地形下,使得天氣系統更富變化。
最近Krishnamurti(2000),運用系集的觀念,去評估各個預報模式的方法,得到比較好的預報結果,故想將系集的觀念套用在MM5之積雲參數化選項中,去看其結果,能不能截長補短,進一步模擬出更好的降雨分布狀況。
作法:將把38個不同的積雲參數化組合模擬結果,依不同的降水物理方案、除去降雨較少的個案後(移除積雲參數化)、符合各積雲參數化所適用範圍的個案平均後,去分析降雨強度、降雨的配置(均方根),看看能不能截長補短,進一步模擬更好的降雨分布狀況。
結果發現:大尺度雨帶的模擬與衛星雲圖相比較相符。有些平均結果,有將48小時的累積降雨最大值模擬出來。 48小時的累積降雨而言,不論是單一積雲參數化組合或平均方案下,除了使用移去積雲參數化和降雨物理方案Warm rain,3個模擬範圍積雲參數化均採用Kain-Fritsch及降水物理方案採用warm rain,三個模擬範圍分別採用Grell、 Kuo 、Grell外,模擬結果均比實際觀測值高。使用均方根統計的結果:使用平均的方法,不論是如何選擇平均的方案,均較僅使用單一積雲參數化組合有比較好的結果。亦即在模擬期間,降雨的配置上有比較好的結果。目前所使用的平均辦法中,以降水物理過程為simple ice,積雲參數化組合又符合模擬的範圍的6 個平均結果,表現最佳。
故由均方根的統計來看,使用平均方法,就降雨的時序配置上,確能截長補短得到比採用單一積雲參數化的結果還要好。
1. 中央氣象局,”氣候資料年報”,中央氣象局,1993-1998。
2. 丘台光,”1998年梅雨季降雨系統之回顧”,中央氣象局衛星中心,
第四屆區域氣候模擬研討會,p.23-24,2001。
3.洪秀雄、洪佳鈴,”台灣地形對梅雨鋒面帶強烈降水之影響”,第六屆
全國大氣科學學術研討會論文彙編,p.697-702,台北,國立中央大
學,1999。
4.張惠玲,”台灣地區午後對流降水之研究”,國立中央大學,大氣物理
研究所碩士論文,pp.123,1997。
5.盛揚帆,”東海旋生機制之研究”,國立中央大學,大氣物理研究所博
士論文,pp.159,1997。
6.Anthes, R. A., 1977: A cumulus parameterization scheme
utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105,
270-286.
7.Anthes, R. A., and T. T. Warner, 1978: Development of
hydrodynamic models suitable for air pollution and other
meterological studies. Mon. Wea. Rev., 106, 1045-1078.
8.Anthes, R. A., Y. -H. Kuo, S. G. Benjamin and Y. F. Li, 1982:
The evolution of the mesoscale environment of severe local
storms: preliminary modeling results. Mon. Wea. Rev., 110,
1187-1213.
9.Arakawa, A. and W. H. Schubert, 1974: Interaction of a
cumulus cloud ensemble with the large-scale environment. Part
I. J. Atmos. Sci., 31, 674-701.
10.Betts, A. K., 1986: A new convective adjustment scheme. Part
I: Observational and theoretical basis. J. Roy. Meteor.
Soc.,112, 677-692.
11.Betts, A. K., and M. J. Miller, 1986: A new convective
adjustment scheme. Part II: Single column tests using GATE
wave, BOMEX, ATEX, and Arctic air-mass data. Quart. J. Roy.
Meteor. Soc., 112, 693-709.
12.Betts, A. K., and M. J. Miller, 1993: The Betts-Miller
scheme. The Representation of Cumulus Convection in Numerical
Models, Meteor Monogr. No. 46, Amer. Meter Soc., 107-121.
13.Brown, M. J., J. D. Locatelli, M. T. Stoelinga, and P. V.
Hobbs, 1999: Numerical modeling of precipitation cores on
cold fronts. J. Atmos. Sci., 56, 1175-1196.
14.Chien, F. -C., C. F. Mass, and Y. -H. Kuo, 1997: Interaction
of a warm-season frontal system with the coastal mountains of
the western United States. Part I: Prefrontal onshore push,
coastal ridging, and alongshore southerlies. Mon. Wea. Rev.,
125, 1705-1729.
15.Chien, F. -C., and C. F. Mass, 1997: Interaction of a warm-
season frontal system with the coastal mountains of the
western United States. Part II: Evolution of a Puget Sound
convergence zone. Mon. Wea. Rev., 125, 1730-1752.
16.Dudhia, J., 1989: Numerical study of convection observed
during the winter monsoon experiment using a mesoscale two-
dimensional model. J. Atmos. Sci., 46, 3077-3107.
17.Dudhia, J., 1993: A non-hydrostatic version of the Penn
State-NCAR mesoscale model: Validation tests and simulation
of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121,
1493-1513.
18.Fritsch, J. M. and C. F. Chappell, 1980: Numerical
prediction of convectively driven mesoscale pressure system.
Part I: Convective parameterization. J. Atmos. Sci., 37, 1722-
1733.
19.Grell, G. A., 1993 : Prognostic evaluation of assumptions
used by cumulus parameterizations. Mon.. Wea. Rev., 121,767-
787.
20.Grell, G. A., J. Dudhia, D. R. Stauffer, 1995: A description
of the fifth-generation Penn state/NCAR mesoscale modeling
system (MM5). NCAR technical note, NCAR/TN398+STR,46 pp.-67pp.
21.Hsie, E.-Y., R. A. Anthes, and D. Keyser, 1984: Numerical
simulation of frontogenesis in a moist atmosphere. J. Atmos.
Sci., 41, 2581-2594.
22.Janjic, Z. I., 1994: The step-mountain eta coordinate model:
Further developments of the convection, viscous sublayer, and
turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.
23.Kain, J. S., and J. M. Fritsch, 1993: Convective
parameterization for mesoscale models: The Kain-Fritsch
scheme. The Representation of Cumulus Convection in Numerical
Models, Meteor. Monger., No. 46, Amer. Meteor. Soc., 165-177.
24.Kessler, E., 1969: On the distribution and continuity of
water substance in atmospheric circulations. Metoro. Monogr.,
10, No. 32, 84 pp.
25.Krishnamurti, T. N., C. M. Kishtawal, Zhan Zhang, Timothy
Larow ,David Bachiochi , and Eric Williford, 2000:Multimodel
Ensemable Forecasts for Weather and Seasonal Climate. J.
climate, 13, 4196-4216.
26.Kuo, H. L., 1974: Further studies of the parameterization of
the influence of cumulus convection on large-scale flow. J.
Atmos. Sci., 31, 1232-1240.
27.Kuo, Y. H., and R. A. Anthes, 1984: Mesoscale budget of heat
and moisture in a convective system over the central United
States. Mon. Wea. Rev., 112, 1482-1497.
28.Yang , M. J.,F .C . Chien and Ming-Dean Cheng,2000:
Precipitation Parameterization in simulated Mei-Yu front.
TAO, Vol. 11,No. 2, 393-422.