| 研究生: |
朱聖杰 Juto Louis-Charles |
|---|---|
| 論文名稱: |
多時的土地覆蓋變化檢測分析,海地和損害程度與建築的關係在地震:一個案例研究的地震一月12,2010 Multi-temporal land cover change detection analysis in Haiti and relationships with building damages level during earthquake: A case study of the earthquake of January 12, 2010 |
| 指導教授: |
陳繼藩
Chi-Farn Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 國際永續發展碩士在職專班 International Environment Sustainable Development Program |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 遙測技術 、災害評估 、海地 |
| 外文關鍵詞: | Remote Sensing Technology, Haiti |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然災害的強大破壞力與特性一直都是阻礙發展中國家經濟與社會發展的主要威脅。對於海地這個世界上極度貧窮的國家而言,未受控管的都市化現象、缺乏政策的都市規劃及空間管理都會加劇自然災害對人類的傷害。近來遙測技術的發展與其應用,可使人們能利用遙測影像來評估城市地區可能受到自然災害侵襲的地區,並且取得自然災害的分佈和判釋災害等級與其他變因間之關係。在2010年1月12日海地地震的事件中,國際組織便利用遙測的資料作為評估災害程度與災後重建工作之用,如聯合國(UN)。本論文利用變遷偵測法與目視檢測法,分析由1979至2009年間之海地衛星影像,取得災害程度與建築物土地年齡間之資料。主要分析方法為下列三個步驟:1)變遷偵測分析和變遷類型分類,2)檢測建築物土地年齡,3)檢測建築物土地年齡和受地震破壞之建築物受損程度。本研究經由分析後顯示以以下結果:
遙感資料顯示:在某些特定時期,尤其是1984至1989年,資料顯示當時為維繫農地與木材能源之生產進而破壞森林地;
在首都太子港與其附近區域有顯著的都市化現象。事實上在2009年,太子港約有20.19%的面積為建築用地,Cité Soleil和Delmas各有11.02%及6.75%的面積為建築用地。
首都地區的建築物用地是最古老的,平均年齡約為28.83年、Delmas的為25.67年、Carrefour的為21.5年、Pétion – Ville的為20.25年、Cité Soleil的為19.65年。
來自於太子港地區建築物用地年齡與建築物損害程度的數據分析,顯示兩者有顯著性的關係。未來可進一步分析建築物年齡與災害程度的關係。
基於以上這些結果我們建議:
主管單位可有效利用地理資訊系統和遙測資料,評估和減輕自然災害的影響,作為未來對災害風險評估有更好的準備;
為了有更好的土地管理與宜居空間,政府當局應採用綜合管理計劃,作為減輕災害對人類生命和財產的影響,須包含:
預測、預報和預防
適當的土地使用規劃
保護措施的應用和建設的規則
發展緊急救援計劃和危機管理
Natural disasters have always been and still are a handicap to economic and social development and are characterized by their great destructive power on lives and properties worldwide especially in developing countries. Haiti, one of the poorest countries in the world, is characterized by an uncontrolled urbanization and a lack of policies for urban planning and space management that have sharpened the population vulnerability to natural disasters. Recent advancements in remote sensing and its application technologies made it possible to use remotely sensed imagery data for assessing vulnerability of urban areas, for capturing damage distribution due to natural disasters and for determining some relationships between damage levels and certain other factors. In the case of January 12, 2010 earthquake in Haiti, remotely sensed information have been used by international organizations like the United Nations for determining different damage levels and the preparation of the Post-Disaster Needs Assessment which are being used currently for reconstruction efforts. This thesis allowed giving information about the trends of damage grades and build-up land ages obtained by change detection methods and visual interpretation from 1979 to 2009. With an adequate scientific literature, the methodology followed 3 main steps: 1) change detection analysis and change types classification, 2) determination of build-up land ages and 3) determination of relationships between build-up land ages and building damages levels caused by the earthquake. Actually, this study has revealed the following facts:
remotely sensed information shows, in some specific periods, notably from 1984 to 1989, there is evidence of destruction of forest lands for subsistence farming and wood energy production paving the way for unplanned construction activities;it is demonstrated as well a significant urbanization in the capital city, Port-au-Prince, and in its metropolitan region. In fact, in 2009, 20.19% of the area of Port-au-Prince is detected as build-up land, Cité Soleil and Delmas have respectively 11.02% and 6.75% of their areas assigned to build-up land. In the other municipalities the percentage is lower;build-up areas in the capital city are the oldest, their average age is 28.83 years old followed by Delmas whose buildup lands average age is 25.67 years old. Moreover, in Carrefour, build-up areas are 21.5 years old; in Pétion-Ville they are 20.25 years old and in Cité Soleil they are 19.65 years old; damage grades are scattered oddly inside each municipality, information about damage localization is not available.further studies will show that most of the heaviest damages are undergone by the oldest buildings and most of the youngest buildings undergo the lightest damages.
Based on these results, it is recommended that:
an efficient use of GIS and remote sensing information by authorities to monitor, assess and mitigate natural disasters in the country, and to study risk and vulnerability of the population for a better preparation;
for a better management of the livable space, governmental authorities should apply an integrated plan of management aiming mitigation of disasters impacts on human lives and properties which consists in:
Forecasting, prediction and prevention information
The proper planning of land use
The adoption of protective measures and rules of construction
Development of contingency plans and crisis management.
1)Accéus, 2009, La pêche traditionnelle, pratique vodouesques et croyances afro-haitiennes à Gressier, cited: April 27, 2011, URL: http://www.memoireonline.com/07/09/2434/La-pche-traditionnelle-pratique-vodouesques-et-croyances-afro-haitiennes--Gressier.html
2)Alexander D.E., 1993, Natural Disasters, Kluwer Academic Publisher,
3)British Geological Survey, 2010, Seimicity of Haiti, cited: March 2011, URL: http://www.bgs.ac.uk/research/highlights/haitiEarthquakeJan2010.html.
4)Carrara A., Guzzetti F., 1995, “Geographical Information Systems in Assessing Natural Hazards”, 5th edition, Kluwer Academic Publishers.
5)Dal X. L. and Khorram S.,1999, Remotely sensed change detection based on artificial neural networks, Photogrammetric Engineering & Remote Sensing, Vol. 65, No. 10, pp. 1187-1194.
6)Eguchi R. T. and al., 2003, Resilient Disaster Response: Using Remote Sensing Technologies for Post-Earthquake Damage Detection, Multidisciplinary Center for Earthquake Engineering Research, cited: February 25, 2011, URL: http://mceer.buffalo.edu/publications/resaccom/03-SP01/09eguchi.pdf.
7)Elmore A. J., 2000, 2. “Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index”, Department of Geological Sciences, Brown University, Providence, RI USA.
8)ESRI, 2007, GIS for Earthquakes, Cited: March 26, 2011, URL: http://www.esri.com/library/bestpractices/earthquakes.pdf
9)Farmer P. et al., 2003, “Unjust embargo of aid for Haiti”, The Lancet vol. 361.
10)Gandharum L., 2010, Classification of Oil Palm in Indonesia Using FORMOSAT-2 Satellite Image, Master thesis, National central University (NCU), Taiwan (R.OC).
11)Hadden R. L. and Minson S. G., 2010, “The Geology of Haiti: An Annotated Bibliography of Haiti’s Geology, Geography and Earth Science”, Army Geospatial Center, Cited: March 5, 2011, URL:
http://www.dtic.mil/cgibin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA528274
12)Hardoy J. E. and D. SATTERTHWAITE, 1991, “Environmental problems of Third World cities: a global issue ignored?”, Public administration and development, Vol. 11, 341-36, Wiley and Sons.
13)IHSI, 2010, Enquête sur les conditions de vie en Haïti, cited, January 27, 2011, URL:
http://www.ihsi.ht/pdf/ecvh/ECVHVolumeI/Population.pdf.
14)Ira, J.P., 2006, Projet de méthodologie d’une cartographie de risques naturels en Haïti. Etude de cas: glissement de terrain à Bourdon (Port-au-Prince, Haïti), Master thesis, University of Liège (Ulg), Belgium.
15)Jensen J.R., 2007, Remote sensing of the environment: an earth resource perspective, second edition, Pearson Prentice Hall.
16)Kressler F. and Steinnocher K., 1996, “Change detection in urban areas using satellite images and spectral mixture analysis, International archives of photogrammetry and remote sensing, volume XXXI, part B7, Vienna 1996.
17)Latortue F., 1998, L’économie rurale et les problèmes de développement en Haïti, first edition, Presses de l’imprimeur II.
18)Lillesand T., Kiefer R. W., and Chipman J., 2007, Remote sensing and image interpretation, fifth edition, Wiley.
19)Manaker D. M. and al., 2008, 15. “Inter-seismic Plate coupling and strain partitioning in the Northeastern Caribbean” Plan d’Action National d’Adaptation (PANA), Ministry of the Environment, Cited: April 28th, 2011, URL: http://unfccc.int/resource/docs/napa/hti01f.pdf
20)McKendry J. and Eastman J. 2008, “Application of GIS in Forestry: A Review”, URL: http://pdfsearchpro.com/applications-of-gis-in-forestry-a-review-pdf.html.
21)Mkhonta M. S., 2010, Mapping Changing Urbanization Patterns in Kwaluseni, Swaziland, Master thesis, National central University (NCU), Taiwan (R.O.C).
22)Murray G.F., 1987, “The domestication of wood in Haiti”, Westview Press, p. 216-225, cited: May 05, 2011.
23)Nirupama and Simonovic S. P., 2002, “Role of remote sensing in disaster management”, ICLR Research, Paper Series – No. 21.
24)Song C. and al. 2001, “Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?”, Remote sensing of Environment 75:230–244.
25)Turabian K.L., 2007, A manual for writers of research, papers, theses, and disseertations, 7th edition, Chicago press editorial staff.
26)United Nations, 2009, “Integrated Geographic Information Services for Wenchuan Earthquake”, Ninth United Nations Regional Cartographic Conference for the Americas, E/CONF.99/CRP.3.
27)World Bank, 1992, World Development Report: Development and the Environment, pp. 435-440, the University of Chicago Press, Cited: April 15th, 2011, URL:
http://www.jstor.org/stable/1154507.
28)Xiubin Li, 1996, “A review of the international researches on land use/land cover change”, NCKI journal, ISSN: 03755444.0.1996-06-008.
29)Yamazaki F. 2002, “Applications of remote sensing and GIS for damage assessment”, Earthquake Disaster Mitigation Research Center, International Conference on Structural Safety and Reliability.