| 研究生: |
郭致均 Chih-Chun Kuo |
|---|---|
| 論文名稱: |
以離心機模型試驗模擬基樁抗壓與抗拉行為 The simulation of the pile behaviors on the compressive and the tensile pile head loading by centrifuge modeling tests |
| 指導教授: |
李崇正
Chung-Jung Lee 黃俊鴻 Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 樁載重試驗 、摩擦力 、砂土 、模型試驗 、拉力樁 、壓力樁 |
| 外文關鍵詞: | pile load test, friction, sand, model test, tensile pile, compressive pile |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去許多研究指出,基樁受拉拔時之樁身摩擦力約為受壓時的50%。顯示基樁之受力機制在受到承壓與拉拔荷載影響時有明顯差異。因此本研究欲進ㄧ步以離心機模型樁載重試驗探討在不同長徑比下,基樁受壓與受拉時承載力與摩擦力之差異,試驗首先進行不同長徑比之樁在乾砂中之極限承壓與拉拔承載力試驗,藉以討論基樁在達到極限破壞時承壓與拉拔行為之差異以及極限荷載的大小與長徑比之關係。爾後再以單一樁徑進行工作荷載下反覆壓、拉樁載重試驗,總計進行五次循環作用,探討工作荷載下壓樁與拉樁循環作用的軸力與摩擦力之變化。依據試驗所得結果在極限破壞的狀況下,拉拔與承壓之承載力百分比隨長徑比的減少由63 %降至38 %,摩擦力百分比則由85 %降至62 %,而反覆壓、拉樁載重試驗結果得到基樁拉拔與承壓百分比值約在52 %~46 %間,承壓的摩擦阻抗無論在極限破壞或是工作荷載下皆大於拉拔的摩擦阻抗。
This study conducted a series of centrifuge model test to discuss the mechanism of the pile subjected to compressive and tensile loadings, and three different slender ratios of piles with the same embedded length were designed in the test. During the test, the model pile was first driven into the dry sand at 1g condition, and then an artificial gravity of 80g was applied in the centrifuge to simulate a full-scale prototype situation. Subsequently, two kinds of loading conditions were performed - monotonic loading and cyclic loading, and the differences of ultimate capacity, skin friction and end-bearing between the pile subjected to compressive and tensile loadings could be observed by measuring the axial force along the pile. From the results, the smaller the slender ratio, the smaller the skin friction ratio of tension to compression, the quantity of which ranges between 85 to 62% at ultimate state of monotonic loading. In cyclic loading test, the skin friction ratio of tension to compression gradually decreased from 52% to 46%. Besides, the pile skin friction in compressive condition is always larger than the one in tensile condition.
1.王韋舜,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
2.王維漢,「單樁負摩擦力之行為研究」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
3.內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,台北(2001)。
4.江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
5.李建中,「試樁加載過程及結果詮釋法之探討」,地工技術雜誌,第五期,第91~97頁(1984)。
6.洪正杰,「沈泥質砂土中拉力樁與壓力樁荷重行為之比較」,碩士論文,朝陽科技大學營建工程系,台中(2001)。
7.陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
8.梁能,「基樁軸向承壓之依時行為」,博士論文,國立中央大學土木工程學系,中壢(2002)。
9.黃俊鴻、楊志文,「基樁載重試驗承載力判釋方法之探討與建議」,地工技術雜誌,第八十期,第5~16頁(2000)。
10.黃信富,「通隧引致隧道上方短樁之反應」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
11.傅哲賢,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
12.謝依航,「基樁負摩擦力之模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
13.茶古文雄,「建築設計杭引拔抵抗力機構考方」,基礎工,Vol. 22, No.7, pp.26-32 (1994)。
14.Alawneh, A.S., “Modelling Load-Displacement Response of Driven Pile in Cohesionless Soils under Tensile Loading” Computers and Geotechnics, Vol. 32, No.8, pp. 578-586 (2005).
15.Amira, M., Yokoyama, Y., and Imaizumi, S., “Friction Capacity of Axially Loaded Model Pile in Sand” Soils and Foundations, Vol.35, No.1, pp.75-82 (1995).
16.American Society for Testing Materials, “Standard Test Method for Piles Under Static Axial Compressive Load” Annual Book of Standard, ASTM D1143-81, pp.195-205 (1994).
17.American Society for Testing Materials, “Standard Test Method for Testing Individual Piles Under Static Axial Tensile Load” Annual Book of Standard, ASTM D3689-90, pp.530-540 (1994).
18.American Society for Testing Materials, “Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus” Annual Book of Standard, ASTM E111-82 pp.274-279 (1994).
19.Chattopadhyay, B.C., and Pise, P.J., “Uplift Capacity of Piles in Sand” Journal of Geotechnical Engineering, Vol.112, No.9, pp.888-904 (1986).
20.Das, B.M., and Seeley, G.R. “Uplift Capacity of Buried Model Piles in Sand” Journal of the Geotechnical Engineering Division, Vol.101, No.10, pp.1091-1094 (1975).
21.Dash, B.K., and Pise, P.J. “Effect of Compressive Load on Uplift Capacity of Model Piles” Journal of the Geotechnical and Geoenvironmental Engineering, Vol.129, No.11, pp.987-992 (2003).
22.Dickin, E.A., and Lyndon, A., “Pile Uplift and Pile Cap Interaction Studies in Sand” Proceedings of the 1994 International Conference on Centrifuge, pp.443-447 (1994).
23.Fioravante, V., Jamiolkowski, M., and Pedroni, S., "Modelling the Behaviour of Piles in Sand Subjected to Axial Load” Proceedings of the 1994 International Conference on Centrifuge, pp.455-460 (1994).
24.Gavin, K.G., and O’kelly, B.C. “Effect of Pile Capacity in Dense Sand” Journal of the Geotechnical and Geoenvironmental Engineering, Vol.133, No.1, pp.63-71 (2007).
25.Lehane, B.M., Jardine, R.J., Bond, A.J., and Frank, R., “Mechanisms of Shaft Friction in Sand from Instrumented Pile Tests” Journal of Geotechnical Engineering, Vol.119, No.1, pp.19-35 (1993).
26.Ismael, N.F., Member, “Analysis of Load Tests on Piles Driven Through Calcareous Desert Sands” Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.12, pp.905-908 (1999).
27.Ismael, N.F., and Klym, T.W., “Uplift and Bearing Capacity of Short Piles in Sand” Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No.5, pp.579-594 (1979).
28.Kezdi, A., “Pile Foundations. Foundation Engineering Handbook, H.F. Winterkorn, and H.Y. Fang, eds., Van Nostrand Reinhold, co., New York., pp. 556-600 (1975).
29.Kulhawy, F.H., Trautmann, C.H., Beech, J.F., O’Rourke, T.D., Mcguire, W., Wood, W.A., and Capano, “Transmission Line Structure Foundation for Uplift-Compression Loading” Report, No. EL-2789, Electric Power Research Institute, Palo Alto, California (1983).
30.Kulhawy, F.H., “Drained Uplift Capacity of Drilled Shaft” Proceeding of the 8th International Conference on Soil Mechanics and Foundation Engineering, Vol.2, No.2, pp.167-172 (1985).
31.Levacher, D.R., and Sieffert, J.G., “Tests on Model Tension Piles” Journal of Geotechnical Engineering, Vol.11, No.12, pp. 735-748 (1984).
32.Mansure, C.I., and Hunter, A.H. “Pile Test-Arkansas River Project” Proceedings, ASCE, Vol.96, No.SM5, pp.1545-1582 (1970).
33.Meyerhof, G.G., and Adams, J.I., “The Ultimate Uplift Capacity of Foundation” Canadian Geotechnical Journal, Vol.5, No.4, pp.225-244 (1968).
34.Miyake, M., Wada, M., Satoh, T. and Katoh, Y., “Pullout Resistance of Steel Pipe Piles in Improved Ground” Proceedings of the 1994 International Conference on Centrifuge, pp.431-435 (1994).
35.Nicola, A.D., and Randolph, M.F., “Tensile and Compressive Shaft Capacity of Piles in Sand” Journal of Geotechnical Engineering, Vol. 119, No. 12, pp. 1952-1973 (1993).
36.Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design. Wiley, New York (1980).
37.Randolph, M.F., Dolwin, J., and Beck, R.D., “Design of Driven Piles in Sand” Geotechnique, London, England (1993).
38.Tomlinson, M. J., Pile Design and Construction Practice (1977).
39.Vesic, A. S., “Bearing Capacity of Deep Foundations in Sand” Highway Research Board Record, No.39, pp.112-153 (1963).
40.Yet, N.S., Leung, C.F., and Lee, F.H., “Behaviour of Axially Loaded Piles in Sand” Proceedings of the 1994 International Conference on Centrifuge, pp.461-467 (1994).
41.Zhang, L., and Hu, T., “Modeling of Residual Stresses of Large Piles in Centrifuge” Proceedings of the International Conference on Centrifuge 91, pp.237-243 (1991).