跳到主要內容

簡易檢索 / 詳目顯示

研究生: 區理函
Li-han Ou
論文名稱: 疏水表面披覆兩性雙離子高分子以抑制生物積垢
Hydrophobic surfaces coated with amphiphilic and zwitterionic polymers for biofouling resistance
指導教授: 阮若屈
Ruoh-chyu Ruaan
張雍
Yung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 120
中文關鍵詞: 兩性雙離子高分子
外文關鍵詞: amphiphilic, zwitterionic
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙離子性材料為一良好的抗蛋白吸附的材料,為了將雙離子性材料以物理披覆方式附著於疏水材質表面,我們必須將合成同時具有雙離子性片段和疏水性片段的高分子。由於將雙離子性單體與疏水性單體進行共聚合十分不易,我們採二甲基乙二胺Dimethylenediamine (DMEA)與高分子Poly (styrene-co-maleic anhydride) (SMA) 或Poly (Maleic anhydride alt 1-octadecene) (MAO)反應的方式合成同時具有雙離子性片段和疏水性片段的高分子SMA-DMEA及MAO-DMEA。 研究目的在於比較這兩種高分子披覆在PVDF超過濾膜上以及烷類自組裝膜上的抗蛋白吸附特性。我們以吸附平衡後液體中蛋白的減少量,來衡量高分子披覆前後PVDF薄膜對牛血清蛋白Bovine Serum Albumin (BSA)與溶菌酶Lysozyme (LYZ)的吸附量;以SPR測量高分子披覆前後,烷類自組裝膜對BSA與溶LYZ的吸附量;又以ELISA與SPR測量高分子披覆前後,fibrinogen在烷類自組裝膜上的吸附程度。ELISA與SPR測量的結果,顯示SMA-DMEA與MAO-DMEA的披覆均可有效降低fibrinogen在烷類自組裝膜上的吸附。實驗結果也顯示,MAO-DMEA高分子在PVDF膜上有較SMA-DMEA高分子更高的披覆量,而無論是MAO-DMEA或SMA-DMEA高分子的批覆,均顯著的降低BSA吸附量至1µg/cm2。而在LYZ吸附實驗中,顯示SMA-DMEA高分子的批覆可有效阻止LYZ的吸附,但MAO-DMEA的披覆對LYZ的抗吸附能力卻不足。SPR的測量顯示MAO-DMEA披覆於烷類自組裝膜上,可大幅降低LYZ的吸附能力至40 ng/cm2,這結果顯示MAO-DMEA高分子披覆於PVDF膜上,之所以無法有效阻止LYZ的吸附,可能是由於MAO的分子量太大(MW 40K),無法有效披覆於PVDF膜內的小孔,因此雖然可以阻擋體積大的BSA,卻無法阻止體積小的LYZ。
    我們也進行披覆穩定性的實驗,測試經高分子披覆的PVDF膜,在以去離子水清洗1,5,10次後,對BSA與LYZ的抗吸附能力。結果顯示MAO-DMEA附著於PVDF膜的力量較強,披覆穩定性較佳,因此我們認為,分子量較小的MAO-DMEA高分子,應是良好的抗生物沾黏的披覆材料。


    Zwitterionic materials have good property of the anti-adhesion of the protein. In order to take the zwitterionic material coated on hydrophobic surface by physical adsorption, we have to synthesize the polymer both have zwitterionic groups and hydrophobic segments. Because it is difficult to take the zwitterionic groups polymerize with the hydrophobic monomer, we choose the Dimethylenediamine (DMEA) react with the Poly (styrene-co-maleic anhydride) (SMA) or Poly (Maleic anhydride alt 1-octadecene) (MAO) to synthesize a SMA-DMEA and MAO-DMEA polymers both have zwitterionic groups and hydrophobic segments. In this study, we compared the protein adsoprion difference on coated polymer PVDF membrane and coated polymer chip. We used the decreased amount of the protein in solution, to measure the Bovine serum albumin (BSA) and Lysozyme (LYZ) adsorption of the coated polymer PVDF membrane; used the ELISA and SPR to measure the fibrinogen adsorption of the coated undecane-1-thiol chip. It is revealed that coated SMA-DMEA and MAO-DMEA membrane can reduce fibrinogen adosption effectively from the SPR and ELISA’s results. The results also showed the MAO-DMEA polymer has higher coating amount than the SMA-DMEA polymer. Not only MAO-DMEA can reduce the BSA adsopriton to 1µg/cm2, but also SMA-DMEA. In LYZ adsoption experiment, SMA-DMEA polymer can reduce LYZ adsorption effectively, but MAO-DMEA has no good anti-adhesion to LYZ. The SPR’s result showed the coated MAO-DMEA chip can significantly reduce the LYZ adsorption to 40 ng/cm2, from this result we cocluded the MAO-DMEA can’t anti-adhesion to LYZ on membrane because of the MAO-DMEA’ molecular weight is too large(MW 50K), it can’t coat on the small hole in PVDF membrane.
    We also do coating stability experiment the result revealed the MAO-DMEA polymer has higher coating property on PVDF membrane than SMA-DMEA polymer. As a result, we think the smaller molecular weight of the MAO-DMEA maybe is excellent antifouling material.

    中文摘要 Abstract 致謝 圖目錄 表目錄 第一章 緒論 1-1研究動機 1-2研究目的 第二章 文獻回顧 2.1仿生雙離子性高分子之抗蛋白質相關研究 2.1.1 Phosphorylcholine類雙離子性高分子 2.1.2 其他人工合成的雙離子性高分子 2.1.2.1 Sulfobetaine類雙離子高分子 2.1.2.2 Carboxybetaine類雙離子高分子 2.1.2.3 Maleic anhydride 與amines 反應之相關研究 2.2高分子合成與表面改質 2.2.1 高分子共聚合法 (Copolymerization method) 2.2.2 表面改質技術 2.3 生物分子與材料表面之交互作用 2.3.1 水與材料表面的交互作用 2.3.2 蛋白質與表面的交互作用 2.3.3 表面電漿共振(Surface Plasmon Resonance, SPR) 2.3.3.1 表面電漿共振原理 2.4蛋白質在不同改質方式的疏水膜上之吸附行為 2.4.1 混參改質膜(Blending) 2.4.2 化學接枝改質膜(Grafting) 第三章 實驗藥品、設備及實驗步驟 3.1 實驗藥品 3.2 實驗設備 3.3 實驗策略 3.3.1 實驗架構 3.3.2 雙離子性高分子(SMA-DMEA)高分子的製備 3.3.3 雙離子性高分子(MAO-DMEA)高分子的製備 3.3.4 SMA-DMEA高分子結構鑑定 3.3.5 MAO-DMEA高分子結構鑑定 3.3.6 SMA-DMEA高分子滴定實驗 3.3.7 疏水表面改質 ( PVDF 膜) 3.3.7.1 SMA-DMEA高分子改質PVDF表面 3.3.7.2 MAO-DMEA高分子改質PVDF表面 3.3.8疏水表面改質 ( chip ) 3.3.8.1 SMA-DMEA高分子改質Au chip表面 3.3.8.2 SMA-DMEA高分子改質SPR chip 表面 3.3.8.3 MAO-DMEA高分子改質SPR chip 表面 3.3.9 緩衝液的製備 3.3.9.1 PBS緩衝液的製備 3.3.9.2 醋酸鹽緩衝液的製備 3.3.10 蛋白質溶液的製備 3.3.11 蛋白質吸附實驗 3.3.11.1 PVDF膜的蛋白質貼附實驗 3.3.11.2 Au Chip上的蛋白質貼附實驗ELISA 3.3.11.3 SPR Chip上的蛋白質貼附實驗 3.3.12 PVDF膜上的高分子披覆穩定性實驗 第四章 結果與討論 4.1雙離子性高分子製備 4.2雙離子性高分子鑑定 4.3 SMA-DMEA系列高分子滴定實驗 4.4雙離子性高分子在疏水表面上的吸附 4.4.1 雙離子性高分子於PVDF膜上的吸附 4.4.2 雙離子性高分子於chip上的吸附 4.5 蛋白質吸附實驗 4.5.1 BSA於SMA-DMEA系列表面的吸附測試 4.5.2 BSA於MAO-DMEA系列表面的吸附測試 4.5.3 BSA於SMA-DMEA與MAO-DMEA表面的吸附測試比較 4.5.4 LYZ於SMA-DMEA系列表面的吸附測試 4.5.5 LYZ於MAO-DMEA系列表面的吸附測試 4.5.6 LYZ於SMA-DMEA與MAO-DMEA表面的吸附測試之比較 4.5.7 Fibrinogen 於SMA-DMEA 1:32表面吸附測試 4.5.8 Fibrinogen、LYZ於MAO-DMEA 1:32表面吸附測試 4.6 離子強度對於抗蛋白質吸附能力的影響 4.7 高分子披覆之穩定性實驗 第五章 結論 第六章 參考文獻

    1.Ladd, J., Zhang Z., Chen, S., Hower, C. and Jiang, S. Y., Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma, Biomacromolecules, 2008, 9 (5), 1357–1361
    2.Wu, CA., Lenhoff, A. M., Electrostatic and Van-Der-Waals contributions to protein adsorption, 2. Modeling of ordered arrays. Langmuir, 1994, 10(10), 3705-3713.
    3.Hunter, R., Foundations of Colloid Science, vol. I. Oxford Science Publications, New York, 1989.
    4.Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., Whitesides, G. M., A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17, (18), 5605-5620.
    5.Holmli,n R. E., Chen, XX., Chapman, R. G., Takayama, S., Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, (9), 2841-2850.
    6.Cho, WK., Kong, BY., Choi, IS., Highly efficient non-biofouling coating of zwitterionic polymers: Poly((3-(methacryloylamino)propyl) -dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir 2007, 23, (10), 5678-5682.
    7.Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T., Iliev, S. B., Ivanov, I. A., Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules, 2006, 7(4),1329-1334
    8.Lewis, A. L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000, 18(3-4), 261-275.
    9.Kadoma, Y., Nakabayashi N., Masuhara, E., Yamauchi, J., Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Koubunshi Ronbunshu (Jpn J Polym Sci Technol) 1978,35,423–427
    10.Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal 1990, 22, (5), 355-360.
    11.Iwasaki, Y., Ishihara, K., Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry 2005, 381, (3), 534-546
    12.Chang, Y., Chen, SF., Zhang, Z., Jiang, SY., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, (5), 2222-2226.
    13.Zhang, Z., Chen, SF., Chang, Y., Jiang, SY., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B 2006, 110, (22), 10799-10804.
    14.Zhang, Z., Chao, T., Chen, SF., Jiang, SY., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, (24), 10072-10077.
    15.Cheng, G., Zhang, Z., Chen, SF., Bryers, J. D., Jiang, SY., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29), 4192-4199.
    16.Azzaroni, O., Brown, A. A., Huck, W. T. S., UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angewandte Chemie-International Edition 2006, 45, (11), 1770-1774.
    17.Cheng, N., Brown, A. A., Azzaroni, O., Huck, W. T. S., Thickness-dependent properties of polyzwitterionic brushes. Macromolecules 2008, 41, (17), 6317-6321.
    18.Yang, W., Chen, SF., Cheng, G., Vaisocherova, H., Xue, H., Li, W., Zhang, JL., Jiang, SY., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24,(17), 9211-9214.
    19.Chang, Y., Liao, SC., Higuch,i A., Ruaan, RC., Chu, CW., Chen, WY., A Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for-plasma protein repulsion. Langmuir 2008, 24, (10), 5453-5458.
    20.Nagy, J. K., Hoffmann, K., Keyes, M.H., Gray, D.N., Oxenoid, K., Sanders, C.R., Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett. 2001 Jul 20;501(2-3):115-20
    21.Kane, R. S., Deschatelets, Whitesides, G. M., Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003, 19, (6), 2388-2391.
    22.Zhang, Z., Chen, SF., Jiang, SY., Dual-functional biomimetic materials, Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, (12), 3311-3315.
    23.Zhang, Z., Vaisocherova, H., Cheng, G., Yang, W., Xue, H., Jiang, SY., Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces, Structural and Environmental Effects. Biomacromolecules 2008, 9, (10), 2686-2692.
    24.Chapman, B., Glow Discharge Process, Wiley, 1980.
    25.Grill, A., Cold Plasma in Materials Fabrication. 1994, IEEE.
    26.Kita, H., Inada, T., Tanaka, K., Okamoto, K., Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone-containing polyimide, Journal of Membrane Science, 1994, 87, 139-147.
    27.Wang, Y., Kim, JH., Choo, KH., Lee, YS., Lee, CH., Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 2000, 169, 269-276.
    28.Chiang, Y. C., Low fouling ultrafiltration and nanofiltration membranes fabricated by zwitterionic surface modification, PhD thesis, 2009
    29.Vogler, E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998, 74, 69-117.
    30.Goertz, M. P., Houston, J. E., Zhu, XY., Hydrophilicity and the viscosity of interfacial water. Langmuir 2007, 23, (10), 5491-5497.
    31.Ramsden, J. J., Puzzles and paradoxes in protein adsorption. Chemical Society Reviews, 1995, 24(1), 73-78.
    32.Vroman, L., The importance of surfaces in contact phase reactions. Seminars in Thrombosis and Hemostasis, 1987, 13(1), 79-85.
    33.Salvagnini, C., Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials. The doctoral dissertation, Université Catholique de Louvain, Belgium, 2005.
    34.Vroman, L., Finding seconds count after contact with blood (and that is all I did). Colloids and Surfaces B, Biointerfaces, 2008, 62, 1-4.
    35.Eloy, R., Belleville, J., Biomaterial-blood interaction - Concise encyclopedia of medical & dental materials. Williams, D.F. Ed., Pergamon Press, 1990, 74-85.
    36.Morgan, H., Taylor, D. M., A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosensorand Bioelectronics, 1992, 7, 405-410.
    37.Boozer, C., Ladd, J., Chen, SF., Jiang, ST., DNA-directed protein immobilization for simultaneous detection of multipleanalytes by surface plasmon resonance biosensor. Analytical Chemistry, 2006, 78(5), 1515-1519.
    38.Ladd, J., Boozer, C., Yu., Chen, QM., Homola, S. F., Jiang, JS., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir, 2004, 20(19), 8090-8095.
    39.Myszka, D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in Biotechnology, 1997, 8(1), 50-57.
    40.Myszka, D. G., Jonsen,M. D., Graves, B. J., Equilibrium analysis of high affinity interactions using BIACORE. Analytical Biochemistry, 1998, 265(2), 326-330.
    41.許志銘, 表面電漿共振感測儀用於抗體與抗原結合之動力學分析. 碩士論文, 國立清華大學生醫工程與環境科學系, 2006.
    42.Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik, 1968, 216.
    43.Kretschmann, E., Raether, H., Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch, 1968, 23A, 2135-2136.
    44.Wang, YQ., Wang, T., Su, YL., Peng, FB., Wu , H., and Jiang , ZY., Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes. Journal of Membrane Science 2006, 270,(1-2),108-114.
    45.Zhang, Z., Chen, S., Chang , Y., and Jiang , SY, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings, he Journal of Chemical Physics , 2006, 110 (

    QR CODE
    :::