跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曲宏宇
Hong-Yu Chu
論文名稱: 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
The formation and interactions of plasma bubbles in dusty plasma liquids
指導教授: 伊林
Lin I
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 94
語文別: 英文
論文頁數: 89
中文關鍵詞: 電漿鞘電漿微泡雷射微粒電漿
外文關鍵詞: sheath, plasma bubble, dusty plasma, laser
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣泡在生活中處處可見,而不同產生的機制與其交互作用下的現象均為有趣及有挑戰性的研究話題。如脈衝雷射在水中產生氣泡的方式為一有趣的研究課題,其在雷射醫療中扮演極重要的作用方式。另外微粒電漿液體在近十年內被各國的研究團隊拿來作為模擬液體反應的
    系統,如可研究脈衝波,固液體相變,及液體黏彈性的各種特性。故在此論文中試著以脈衝雷射在微粒電漿液體中產生電漿微泡作為研究課題。因微粒電漿為一非線性與多複雜性的系統,故在不同時間尺度下表現不同的動力行為。此論文中將對於不同時間尺度與不同背景壓力下做一系列的探討,包含於10-9~10-6 秒內脈衝雷射誘發微粒爆炸的膨脹行為,10-6~10-3 秒內周圍微粒的膨脹過程,10-3 後微粒空腔形成在不同壓力下由於離子與電子在電漿環境下表現各種不同現象。接著於論文內也討論了,電漿微泡與微粒波間的交互作用,以及微泡與微泡間不同方向性的交互作用。在本論文最後更討論以一方法引入微粒來量測在低壓力下的黏滯係數以及發現微粒庫倫電漿團下可改變電漿鞘的分佈情形。


    Gas bubbles are observed in our daily life, which are generated through self-organization or external drives. One of the techniques generating bubble in liquid is through the vaporization of liquid by the intense laser pulse. It provides many applications in laser surgery and molecular and cellular biophysics.
    On the other hand, the dusty plasma system is a weakly ionized plasma containing many micron-size dust particles. Through Coulomb interaction
    and charging process, the massive dust grains are strongly coupled with the background plasma. It provides a platform to investigate the Mach
    cone structure, the solid-liquid transition, viscoelastic property microscopically in the strongly coupled Coulomb liquid system. As the gas bubble generated in the liquid through the laser-liquid interaction, the plasma bubble can be generated in the dusty plasma liquid by the
    intense laser pulse. It is found that the plasma bubble, a localized structure, sustains its shape and travels downward in the dusty plasma liquid. Hence, It brings out several interesting issues at different time scales. In this thesis,
    the expansion of the spherical plume is compared with the shock wave model at nsec to ¹sec. The dust particles are pushed by the outward ion
    flow associated with the plume and the plasma bubble is formed at usec to msec. After msec, the plasma bubble travels downward associated with a surrounding dipole-like dust flow field at suitable background condition. It is also found that there is a strong interaction between two vertically aligned plasma bubbles. The formation of the wave induced bubble suggests that the spherical void is an extreme case of the dust density wave with large amplitude. In the last part of this thesis, the observation of the dust cluster changing the sheath potential well is shortly discussed.

    1 Introduction 1 2 Background 6 2.1 Breakdown of gases in fields of various frequency ranges . . . . 6 2.2 Dusty plasma system . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 RF glow discharge . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Dusty plasma crystals and liquids . . . . . . . . . . . . 10 2.3 Laser ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Interaction of intense laser pulse and extensive media . 12 2.3.2 Optical breakdowns of nanoparticles and microdroplets by intense laser pulse . . . . . . . . . . . . . . . . . . . 15 2.3.3 Strong explosions in air . . . . . . . . . . . . . . . . . . 16 2.4 Bubble formation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Waves in plasma . . . . . . . . . . . . . . . . . . . . . 18 2.4.2 Bubble generated by pulsed laser in plasma . . . . . . 19 3 Experiment 21 3.1 Plasma bubbles formation and inteaction . . . . . . . . . . . 21 3.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 21 3.1.2 CCD measurement . . . . . . . . . . . . . . . . . . . . 22 3.1.3 Langmuir probe measurement . . . . . . . . . . . . . . 24 3.2 Probing the dusty plasma sheath profile . . . . . . . . . . . . 25 3.2.1 setup and measurement . . . . . . . . . . . . . . . . . 25 4 Result and Discussion 26 4.1 Formation of the plasma bubbles from nsec to ¹sec . . . . . . 27 4.1.1 Plume expansion from gated ICCD measurement . . . 29 4.1.2 Plume measurement from Langmiur probe . . . . . . . 32 4.2 Dynamics of single plasma bubble from ¹sec to msec . . . . . 36 4.2.1 Dust cavity expansion from gated ICCD measurement 36 4.2.2 Typical properties of plasma bubble . . . . . . . . . . . 40 4.2.3 Interactions of plasma bubbles and dust density wave . 45 4.3 Interactions of multiple plasma bubbles after msec . . . . . . . 51 4.3.1 Horizontal interactions of plasma bubbles . . . . . . . . 51 4.3.2 Vertical interactions of plasma bubbles . . . . . . . . . 55 4.4 Probing the dusty plasma sheath . . . . . . . . . . . . . . . . 58 4.4.1 Measurement of the viscosity coefficient of argon gas . 59 4.4.2 Sheaths in dust-free plasma and dusty plasma . . . . . 61 5 Conclusion 69

    [1] Alfred Vogel etal. Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. PRL., 88, 2002.
    [2] Ohan Baghdassarian et al. Liminescence characteristics of laser-induced
    bubbles in water. PRL., 83, 1999.
    [3] Ohan Baghdassarian et al. Spectrum of luminescence from laser-created
    bubbles in water. PRL., 86, 2001.
    [4] V. Nosenko and et al. Decharging of complex plasmas: First kinetic
    observations. PRL., 88, 2002.
    [5] Lin I et al. Direct observation of coulomb crystals and liquids in strongly
    coupled rf dusty plasmas. PRL., 72, 1994.
    [6] N.N. Rao et al. Effect of dust charge inhomogeneity on linear and nonlinear
    dust-acoustic wave-propagation. PHYSICS OF PLASMAS, 6,1999.
    [7] N.N. Rao et al. Adiabatic dust-acoustic solitons. PHYSICS LETTERS
    A, 235, 1997.
    [8] J. C. Miller et al. Laser ablation. Springer-Verlag, 1994.
    [9] Walter W. Duley et al. Laser processing and analysis of materials. John
    Wiley and Sons, New York, 1983.
    [10] David B. Geohegan. Fast intensified-ccd photography of yba2cu307-x
    laser ablation in vacuum and ambient oxygen. APL., 60, 1992.
    [11] Hong-Yu Chu and et al. Observation of laser-pulse-induced traveling
    microbubbles in dusty plasma liquids. PRL., 90, 2003.
    [12] G. E. Morfill etal. Condensed plasmas under microgravity. PRL., 83,
    1999.
    [13] J. Goree etal. Instabilities in a dusty plasma with ion drag and ionization. PRE., 59, 1999.
    [14] Yuri P. Raizer. Gas discharge physics. Berlin New York Springer-Verlag,
    1991.
    [15] B. Chapman. Glow discharge processes. John Wiley and Sons, New
    York, 1980.
    [16] Lin I et al. Microscopic particle motions in strongly coupled dusty plasmas. Science, 272, 1996.
    [17] Chi-Hui Chiang and Lin I. Cooperative particle motions and dynamical
    behaviors of free dislocations in strongly coupled quasi-2d dusty plasmas.
    PRL., 77, 1996.
    [18] G. Morfill and et al. Charge fluctuation instability of the dust lattice
    wave. PRL., 83, 1999.
    [19] A. V. Ivlev and et al. Decharging of complex plasmas: First kinetic
    observations. PRL., 90, 2003.
    [20] Lee-Wen Teng and et al. Microscopic observation of confinementinduced
    layering and slow dynamics of dusty-plasma liquids in narrow channels. PRL., 90, 2003.
    [21] Bin Liu and J. Goree. Shear viscosity of two-dimensional yukawa systems
    in the liquid state. PRL., 94, 2005.
    [22] Chia-Ling Chan and et al. Shear banding in mesoscopic dusty plasma
    liquids. PRL., 93, 2004.
    [23] Gregor E. and et al. Highly resolved fluid flows: ’liquid plasmas’ at the kinetic level. PRL., 92, 2004.
    [24] Riju C. Issac et al. Twin peak distribution of electron emmission profile
    and impact ionization of ambient molecules during laser ablation of silver target. ARL., 73, 1998.
    [25] David B. Geohegan et al. Dynamics of laser ablation plume penetration
    through low pressure background gases. ARL., 67, 1995.
    [26] E. T. Gumbrell and et al. Intense laser interactions with sprays of
    submicron droplets. Physics of plasma, 8, 2001.
    [27] L. C. Mountford and et al. Characterization of a sub-micron liquid spray
    for laser-plasma x-ray generation. Review of scientific instruments, 69,1998.
    [28] M. Lezius and et al. Explosion dynamics of rare gas clusters in strong
    laser fields. PRL., 80, 1998.
    [29] D. R. Symes and et al. Fast-ion production from short-pulse irradiation
    of ethanol microdroplets. PRL., 93, 2004.
    [30] IAkov Borisovich. Physics of shock waves and high-temperature hydrodynamic
    phenomena. Mineola, N.Y. : Dover Publications, 1991.

    QR CODE
    :::