| 研究生: |
孫翊仁 Yi-Jen Sun |
|---|---|
| 論文名稱: | Probing Cell Wall Synthetic Dynamics by Bacterial Flagellar Motor in Escherichia coli |
| 指導教授: |
羅健榮
Chien-Jung Lo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 細菌細胞壁 、大腸桿菌 、細菌鞭毛馬達 、螢光顯微鏡 |
| 外文關鍵詞: | Bacterial cell wall, Escherichia coli, Bacterial flagellar motor, Fluorescence microscopy |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌需要不斷分裂來確保種族的延續,由於技術上的困難,在這個動態的生長與分裂過程中,我們對於細菌DNA複製的了解比細胞壁生合成的過程來的詳盡許多。因此在細菌分裂的過程中,有個簡單卻基本的問題我們尚未能解答:「母細菌如何在自身插入新的細胞壁來生成兩個子細胞的細胞壁結構?」
細菌鞭毛馬達的整個結構從細胞內膜一路貫穿到細胞體外,穩固的鑲嵌在細胞壁之中。因此當細菌的細胞壁在生長時,馬達位置的移動只會與細菌插入細胞壁的方式有關。利用這個特性,我們發展了一套新方法,利用細菌鞭毛馬達作為細胞壁上的標記來了解細胞壁插入的機制。
我們將細菌鞭毛馬達標上螢光,並觀察在生長時馬達是如何位移的。利用馬達的位移,我們確認了細菌體中在生長時沒有細胞壁插入的部位以及其範圍。而當細菌在延長自身身長時,馬達在有細胞壁插入的部分會維持在同樣的相對位置,我們由此推論細菌身上任何部位細胞壁插入的速度都是等值的。在細菌進入分裂階段時,位於細菌中心的馬達會逐漸遠離中心,意味著新的細胞隔膜是完全由新的細胞壁材料所構成的。利用以上我們對細胞壁插入機制的了解,我們能利用Bernoulli-shift map來推測馬達在每一代細菌身上的位置。
Bernoulli-shift map平滑化的函數特性告訴我們馬達在細菌表面上的分布是由新生成的馬達所決定的。我們用不同顏色的螢光染劑標記了不同時間點出生的馬達,證明了馬達分布所呈現的凹函數(Concave function)分布是由於馬達傾向於生成在細菌中心所造成的。
有了螢光標記細菌鞭毛馬達這項技術讓我們追蹤馬達的動態,我們對細菌細胞壁生合成機制與穿膜蛋白的分布機制的探討將能有更多的發展性。
Bacterial reproduction is a critical and dynamic life process. Here, we raise a simple yet fundamental question that how does the mother cell remodels the cell wall into two daughter cells? Compare to the DNA replication, we have far less understanding in the mechanism of cell wall remodeling due to the technical difficulties.
In this thesis, we develop a new approach using membrane anchored protein as landmarks to study the cell wall synthesis dynamics. Bacterial flagellar motors (BFM) are membrane protein complexes anchored firmly on the cell wall. Thus BFMs position changes along with cell growth depend solely on the spatiotemporal coordinate of the cell wall insertion.
By tracking fluorophore labeled BFMs in Escherichia coli while cell reproduce, we confirm the existence and determine the size of the cell wall growth inert zone. The normalized axial position of the motor remains constant while cell elongate, indicate a uniform axial cell wall insertion rate. During division, the mid-cell motors will be moved away from cell center indicating that the septum is completely formed by new cell wall material. With the understanding of the cell wall insertion, we built a modified Bernoulli-shift map to predict the position of the motors in each generation once it was formed.
The smoothing property of the Bernoulli-shift map also indicate the motor distribution only determine by the newly born motor. With sequentially labeling motors with different color fluorophore, we are able to distinguish the newly born motors and confirm the concave distribution of the BFM is contributed by the preference of the motors to synthesize in the cell center.
With this new experimental method, we open a new door to study the cell wall dynamics and membrane anchored proteins dynamics.
[1] Joseleau-Petit, D., Liébart, J.-C., Ayala, J. A., &D’Ari, R. (2007). Unstable Escherichia coli L Forms Revisited: Growth Requires Peptidoglycan Synthesis. Journal of Bacteriology, 189(18), 6512 LP-6520.
[2] Turner, R. D., Hurd, A. F., Cadby, A., Hobbs, J. K., &Foster, S. J. (2013). Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nature Communications, 4, 1496.
[3] Rojas, E. R., &Huang, K. C. (2018). Regulation of microbial growth by turgor pressure. Current Opinion in Microbiology, 42, 62–70.
[4] Colco, R (2005). Gram Staining. Current Protocols in Microbiology. 00 (1): Appendix 3C.
[5] Scheffers, D.-J., &Pinho, M. G. (2005). Bacterial Cell Wall Synthesis: New Insights from Localization Studies. Microbiology and Molecular Biology Reviews, 69(4), 585 LP-607.
[6] Schleifer, K. H., &Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews, 36(4), 407 LP-477.
[7] Vollmer, W., &Seligman, S. J. (2010). Architecture of peptidoglycan: more data and more models. Trends in Microbiology, 18(2), 59–66.
[8] Carlström D. (1957). The crystal structure of alpha-chitin (poly-Nacetyl-D-glucosamin). The Journal of Biophysical and Biochemical Cytology, 3(5), 669–683.
[9] Matias, V. R. F., Al-Amoudi, A., Dubochet, J., &Beveridge, T. J. (2003). Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. Journal of Bacteriology, 185(20), 6112 LP-6118.
[10] Gan, L., Chen, S., &Jensen, G. J. (2008). Molecular organization of Gram-negative peptidoglycan. Proceedings of the National Academy of Sciences, 105(48), 18953 LP-18957.
[11] Reece, J. B., Urry, L. A., Cain, M. L. 1., Wasserman, S. A., Minorsky, P. V., Jackson, R., & Campbell, N. A. (2014). Campbell biology (Tenth edition.). Boston: Pearson.
[12] Yao, X., Jericho, M., Pink, D., &Beveridge, T. (1999). Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy. Journal of Bacteriology, 181(22), 6865 LP-6875.
[13] vanTeeffelen, S., Wang, S., Furchtgott, L., Huang, K. C., Wingreen, N. S., Shaevitz, J. W., &Gitai, Z. (2011). The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proceedings of the National Academy of Sciences, 108(38), 15822 LP-15827.
[14] Kawazura, T., Matsumoto, K., Kojima, K., Kato, F., Kanai, T., Niki, H. and Shiomi, D. (2017), Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Molecular Microbiology, 104: 472-486.
[15] Ursell, T. S., Nguyen, J., Monds, R. D., Colavin, A., Billings, G., Ouzounov, N., …Huang, K. C. (2014). Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proceedings of the National Academy of Sciences, 111(11), E1025 LP-E1034.
[16] Hussain, S., Wivagg, C. N., Szwedziak, P., Wong, F., Schaefer, K., Izoré, T., …Garner, E. C. (2018). MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife, 7, e32471.
[17] Hale, C. A., Meinhardt, H., & de Boer, P. A. (2001). Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. The EMBO journal, 20(7), 1563–1572.
[18] Bisson-Filho, A. W., Hsu, Y.-P., Squyres, G. R., Kuru, E., Wu, F., Jukes, C., …Garner, E. C. (2017). Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science, 355(6326), 739 LP-743.
[19] Höltje, J.-V. (1998). Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli. Microbiology and Molecular Biology Reviews, 62(1), 181 LP-203. Retrieved from
[20] Zhao, H., Patel, V., Helmann, J. D. and Dörr, T. (2017), Don’t let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. Molecular Microbiology, 106: 847-860.
[21] dePedro, M. A., Quintela, J. C., Höltje, J.V, &Schwarz, H. (1997). Murein segregation in Escherichia coli. Journal of Bacteriology, 179(9), 2823 LP-2834.
[22] Nirody, J. A., Sun, Y., &Lo, C. (2017). The biophysicist’ s guide to the bacterial flagellar motor. Advances in Physics: X, 6149, 1–20.
[23] Berg, H. C. (2004). E. coli in motion. Springer, New York, NY
[24] Ping, L. (2010). The Asymmetric Flagellar Distribution and Motility of Escherichia coli. Journal of Molecular Biology, 397(4), 906–916.
[25] Darnton, N. C., Turner, L., Rojevsky, S., &Berg, H. C. (2007). On Torque and Tumbling in Swimming Escherichia coli. Journal of Bacteriology, 189(5), 1756 LP-1764.
[26] Randich, A. M., & Brun, Y. V. (2015). Molecular mechanisms for the evolution of bacterial morphologies and growth modes. Frontiers in microbiology, 6, 580.
[27] Brown, M. T., Steel, B. C., Silvestrin, C., Wilkinson, D. A., Delalez, N. J., Lumb, C. N., …Berry, R. M. (2012). Flagellar Hook Flexibility Is Essential for Bundle Formation in Swimming Escherichia coli Cells. Journal of Bacteriology, 194(13), 3495 LP-3501.
[28] Parkinson J. S. (1978). Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. Journal of bacteriology, 135(1), 45–53.
[29] Beckett, D., Kovaleva, E. and Schatz, P. J. (1999), A minimal peptide substrate in biotin holoenzyme synthetase‐catalyzed biotinylation. Protein Science, 8: 921-929.
[30] Fujii, T., Kato, T., &Namba, K. (2009). Specific Arrangement of a -Helical Coiled Coils in the Core Domain of the Bacterial Flagellar Hook for the Universal Joint Function. Structure/Folding and Design, 17(11), 1485–1493.
[31] Green, N. M. (1975). Avidin. Advances in Protein Chemistry (Vol. 29, pp. 85–133).
[32] DePedro, M. A., Schwarz, H., &Koch, A. L. (2003). Patchiness of murein insertion into the sidewall of Escherichia coli. Microbiology, 149(7), 1753–1761.
[33] Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15(3), 168 LP-173.
[34] Joel S. Silfies, E.G.L., Stanley A. Schwartz, and Michael W. Davidson. Nikon Perfect Focus System (PFS).