跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧洺霈
Ming-Pei Lu
論文名稱: 反射式準共光程外差光柵干涉儀應用於長行程精密定位技術之研究
Study of reflective quasi-common path heterodyne grating interferometer and its application to long distance precision positioning
指導教授: 李朱育
Ju-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 長行程精密定位光柵干涉術外差干涉術
外文關鍵詞: long distance precision positioning, heterodyne interferometry, grating interferometry
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一套新穎的光學量測技術-反射式準共光程外差光柵干涉儀,並將這套干涉儀應用於長行程精密定位。準共光程的光路設計,提高了外差光柵干涉儀的穩定度。本系統使用反射式的光柵,使得量測系統容易架設於各種位移平台,並容易模組化。本研究設計一套類比電路來解調外差訊號,增加量測相位的速度並降低系統成本。接著利用反射式準共光程外差光柵干涉儀作為位置回授系統,進行長行程精密定位技術的開發。將具有長行程移動能力的壓電陶瓷馬達,以及具有精密定位能力的壓電致動器,組合成一組位移平台,使位移平台同時具備長行程及精密定位的能力。此外我們利用比例回授控制器,對此位移平台進行閉迴路控制。本論文所提出的反射式準共光程外差光柵干涉儀的理論解析度為0.2nm。考慮雜訊的影響下,本系統的量測解析度為4nm,量測速度為500?m/s。而定位解析度為5nm,定位速度為286?m/s.


    A novel optical displacement measurement system “Reflective quasi-common path heterodyne grating interferometer”was proposed. The nearly common path configuration increases the stability of heterodyne grating interferometer. We design an analog circuit to demodulate the heterodyne signal to increase the measurable speed and decrease the cost of the system. In this research, the reflective quasi-common path heterodyne interferometer is used as a displacement feedback system to feedback control a stage. The moving stage is composed of a coarse stage and a fine stage. The coarse stage is used for long-distance positioning while the fine stage is used for precision compensation. The coarse stage and fine stage is integrated and can provide long-distance movement with nanometric resolution. We use the proportional controller to compensate the error simultaneously. Theorically, the resolution of the reflective quasi-common path heterodyne grating interferometer is 0.2nm. After taking the noises into consideration, from the experimental results, the resolution of the interferometer is 4nm. And the measureable speed is 500?m/s. The positioning resolution is 5nm and the positioning speed is 286?m/s.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 2 1.2.1外差干涉術之文獻回顧 2 1.2.2光柵干涉術之文獻回顧 4 1.2.3精密定位平台之文獻回顧 5 1.3研究目的 7 1.4章節簡介 7 第二章 基礎理論 8 2.1 外差干涉術 8 2.1.1 旋轉光柵產生外差光源 8 2.1.2 旋轉波片產生外差光源 10 2.1.3 電光晶體調制外差光源 10 2.1.4 塞曼效應產生外差光源 11 2.2 光柵干涉術 12 2.2.1 光柵位移引入繞射光相位變化 12 2.2.2 光柵干涉術 12 2.3 外差訊號相位解調 13 2.3.1鎖相放大器 13 2.3.2計算邊緣時間區間解調相位法 15 2.4 比例回授控制 15 2.5 小結 16 第三章 系統架構 17 3.1反射式準共光程外差光柵干涉儀架構 17 3.2反射式準共光程外差干涉儀架構 19 3.3相位解調系統架構 23 3.3.1相位解調系統架構 23 3.3.2帶通濾波器設計 24 3.3.3 90°相位移動電路 26 3.3.4 低通濾波器 28 3.4長行程精密定位技術 30 3.4.1 控制程式流程 31 3.5小結 33 第四章 實驗結果與討論 34 4.1量測實驗 34 4.1.1長行程量測實驗: 70 um弦波及三角波運動 34 4.1.2中行程量測實驗: 14 um弦波及三角波運動 37 4.1.3小行程量測實驗: 500 nm弦波及三角波運動 39 4.1.4小行程量測實驗:100 nm方波運動 41 4.1.5量測穩定度實驗 42 4.2控制實驗 44 4.2.1小行程步階控制實驗:50 nm、10 nm步階控制運動 44 4.2.2中行程控制實驗 47 4.2.3長行程控制實驗 50 4.2.4長行程重複性實驗 53 4.2.5定位穩定度實驗 55 4.3實驗討論 56 4.3.1量測解析度 56 4.3.2量測靈敏度 56 4.3.3量測速度測試 57 4.3.4定位解析度 58 4.3.5定位速度 58 4.4小結 59 第五章 誤差分析 60 5.1系統誤差 60 5.1.1 偏振片方位角引入之非線性誤差 61 5.1.2 1/2波片方位角引入之非線性誤差 63 5.1.3 相位延遲器引入之非線性誤差 64 5.1.4 半波片相位誤差所引入之非線性誤差 65 5.1.5 偏振片消光比引入之非線性誤差 67 5.1.6 訊號振幅引入之非線性誤差 68 5.1.7 餘弦誤差 70 5.2隨機誤差 71 5.2.1 環境振動 71 5.2.2 光學元件及夾治具材料熱特性 71 5.2.3 電子雜訊 72 5.3小結 72 第六章 結論與未來展望 73 6.1結論 73 6.2未來展望 73 參考文獻 74

    [1]. M. C. Rocco, et al. (Eds.), Nanotechnology research directions, Kluwer Academic Publishers, March 2000.
    [2]. D. J. Resnick, et al., “Imprint lithography for integrated circuit fabrication”, The Journal of Vacuum Science and Technology, Vol.21, pp. 2624-2631, November 2003.
    [3]. S. Hosoe, “Laser interferometric system for displacement measurement with high precision”, Nanotechnology, Vol.2, pp.88-95, April 1991.
    [4]. Y. Jourlin, et al., “Compact diffractive interferometric displacement sensor in reflection”, Precision Engineering, Vol.22, pp.1-6, January 2002.
    [5]. O. G. Helleso, et al., “Interferometric displacement sensor made by integrated optics on glass”, Sensors and Actuators A, Vol.47, pp.478-481, April 1995.
    [6]. T. Kubota, et al., “Interferometer for measuring displacement and distance”, Optics Letters, Vol.12, pp.310-312, May 1987.
    [7]. G. E. Sommargren, “Optical heterodyne profilometry”, Applied Optics, Vol.20, pp.610-618, February 1981.
    [8]. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement”, Applied Optics, Vol.25, pp.3137-3140, September 1986.
    [9]. T. Suzuki, et al., “Phase locked laser diode interferometry for surface profile measurement”, Applied Optics, Vol.28, pp.4407-4410, October 1989.
    [10]. P. J. Caber, “Interferometric profiler for rough surfaces”, Applied Optics, Vol.32, pp.3438-3441, July 1993.
    [11]. H. Maruyama, et al., “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness”, Applied Optics, Vol.41, pp.1315-1322, March 2002.
    [12]. S. D. Nicola, et al., “Reflective grating interferometer for measuring the refractive index of transparent materials”, Optics Communications, Vol.118, pp.491-494, August 1995.
    [13]. M. H. Chiu, et al., “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry”, Applied Optics, Vol.36, pp.2936-2939, May 1997.
    [14]. M. H. Chiu, et al., “Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry”, Applied Optics, Vol.28, pp.4407-4410, July 1999.
    [15]. M. Neviνre, et al., “High-accuracy translation–rotation encoder with two gratings in a Littrow mount”, Applied Optics, Vol.38, pp.67-76, January 1999.
    [16]. Y. Huang and C. H. Menq, “Design and development of a large range linear encoder with subnanometer resolution”, Review of Scientific Instruments, Vol.77, pp.105104-1 - 105104-11, October 2006.
    [17]. N. B. Yim, et al., “Dual mode phase measurement for optical heterodyne interferometry”, Measurement Science and Technology, Vol.11, pp.1131-1137, August 2000.
    [18]. F. C. Demarest, “High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics”, Measurement Science and Technology, Vol.9, pp.1024-1030, April 1998.
    [19]. C. M. Sutton, “Non-linearity in length measurement using heterodyne laser Michelson interferometry”, Journal of Physics E: Scientific Instruments, Vol.20, pp.1290-1292, October 1987.
    [20]. J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy”, Review of Scientific Instruments, Vol.71, pp.2669-2676, July 2000.
    [21]. D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry” Measurement Science and Technology, Vol. 9, pp.1031-1035, March 1998.
    [22]. M. Neviνre, et al., “High-accuracy translation–rotation encoder with two gratings in a Littrow mount”, Applied Optics, Vol.38, pp.67-76, January 1999.
    [23]. J. Dyson, “Common path interferometer for testing purpose”, Applied Optics, Vol.47, pp.386-387, November 1956.
    [24]. C. L. Koliopoulos, “Radial grating lateral shear heterodyne interferometer”, Applied Optics, Vol.19, pp.1523-1528, May 1980.
    [25]. C. C. Hsu, et al., “Reflection type heterodyne grating interferometry for in-plane displacement measurement”, Optics Communications, Vol.281, pp.2582-2589, May 2008.
    [26]. G. Zhou and F. S. Chau, “Grating-assisted optical microprobing of in-plane and out-of-plane displacement of microelectromechanical device”, Journal of Microelectromechanical System, Vol.15, pp. 388-395, April 2006.
    [27]. Y. T. Liu, et al., “Precision position control using combined piezo-VCM actuators”, Precision Engineering, Vol.29, pp. 411-422, October 2005.
    [28]. L. Chassagne, et al., “Highly accurate positioning control method for piezoelectric actuators based on phase-shifting optoelectronics”, Measurement Science and Technology, Vol.16, pp. 1771-1777, September 2005.
    [29]. H. J. Pahk, et al., “Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation”, International Journal of Machine Tools and Manufacture, Vol.41, pp.51-63, January 2001.
    [30]. H. Liu, et al., “A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation”, Journal of Micromechanics and Microengineering, Vol.13, pp.295-299, March 2003.
    [31]. W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating”, Applied Optics, Vol.9, pp.649-652, March 1970.
    [32]. M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates”, Optics Letters, Vol.9, pp.319-321, August 1984.
    [33]. D. C. Su, et al., “A heterodyne interferometer using an electro-optic modulator for measuring small displacements”, Journal of Optics, Vol 27, pp.19-23, January 1996.
    [34]. P. Zeeman, “The effect of magnetisation on the nature of light emitted by a substance”, Nature, Vol.55, pp.347, February 1987.
    [35]. J. Y. Lee, et al., “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution”, Sensors and Actuators A, Vol. 137, pp.185-191, June 2007.
    [36]. K. J. Gåsvik, Optical metrology, Third Edition, John Wiley & Sons, February 2003.
    [37]. S. O. Kasap, Optoelectronics and photonics, Prentice Hall Inc., New Jersey, 2001.
    [38]. Stanford Research System, Model SR850 DSP Lock-In Amplifier, 1992.
    [39]. K. Oka, et al., “Real-time phase demodulator for optical heterodyne detection processes”, Measurement Science and Technology, Vol.2, pp.106-110, February 1991.
    [40]. F. L. Pedrotti and L. S. Pedrotti, Introduction to optics, Prentice Hall Inc., 1993.
    [41]. T. B. Eom, et al., “A simple method for the compensation of the nonlinearity in the heterodyne interferometer”, Measurement Science and Technology, Vol.13, pp. 222-225, January 2002.
    [42]. 林正淳,光學機構設計,林正淳,新竹縣,台灣,2008。
    [43]. 李貴宇,「波長調制外差式光柵干涉儀之研究」,國立中央大學,碩士論文,民國96年。
    [44]. 吳維庭,「準共光程外差光柵干涉術之研究」,國立中央大學,碩士論文,民國97年。
    [45]. 黃思翰,「複合式長行程精密定位平台之研究」,國立中央大學,碩士論文,民國98年。

    QR CODE
    :::