| 研究生: |
李佳恬 Chia-Tien Li |
|---|---|
| 論文名稱: |
以毛細電泳分離具對掌異構物之藥物的方法開發與應用 Application of Caplillary Electrophoresis to Separate Enantiomeric Pharmaceutical Drugs |
| 指導教授: |
丁望賢
Wang-Hsien Ding |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 環糊精 、非類固醇類消炎藥 、對掌異構物 、毛細管電泳 |
| 外文關鍵詞: | cyclodextrin, enantiomers, NSAIDs, capillary electrophoresis |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來環境檢測之發展對藥物殘留物(pharmaceutical residues)開始產生注目,大量的藥物持續地製造、消耗並排泄到環境之中,但其後環境中會發生的狀況、即將面對的命運與這些殘留物會造成的影響仍是大家未知的問題。特別是對於具對掌特性的藥物,由於不同的對掌異構物(enantiomer)對生物體的生理活性與毒性皆有所不同,目前仍無法完全了解其對環境所遭成的影響,所以此類藥物的研究已引起大眾的關心。
本研究將針對凱妥普洛芬(ketoprofen)與異布洛芬(ibuprofen)兩種屬於非類固醇類消炎藥(nonsteroidal anti-inflammatory drugs,簡稱NSAIDs)的對掌異構物進行分析與研究。目前這兩種藥物殘留物都被歸類為「新興污染物」(emerging contaminants),其副作用可能對人與動物造成衝擊。
為檢測台灣市售的成藥與環境水樣品中是否含有凱妥普洛芬與異布洛芬對掌異構物,本研究以毛細管電泳儀(capillary electrophoresis,簡稱CE)搭配紫外光燈源進行實驗。先將成藥直接溶於甲醇(methanol),並過濾注入毛線管電泳儀做檢測;另外再以固相萃取法(solid phase extraction,簡稱SPE) 萃取出環境水樣品中的待測物。緩衝溶液為20 mM的醋酸鈉,內含10 mM羧酸根-β-環糊精與30 mM三甲基-β-環糊精為對掌選擇劑,同時將pH調整為5.0,在此條件下可於基線完全分離兩組對掌待測物並進行定量工作。檢測結果顯示所測成藥是以消旋混合物的模式存在,並將檢測之結果與包裝上之含量進行比較後,得到之誤差率皆在15 %以下,顯示本方法具有良好的準確度。在200 mL的環境水樣品中,四個對掌待測物之定量極限(limit of quantitation,簡稱LOQ)為1.0 µg/L,水樣品中的添加標準品回收率皆在70 %以上,相對標準偏差(relative standard deviation,簡稱RSD)皆在7.5 %以下,然而,在五個所選擇的水樣品中皆未偵測到四個對掌待測物的存在。
此外,為增進選擇性與靈敏度,本研究另行發展一套螢光衍生化為的方法,並搭配雷射誘導螢光儀為偵檢器(laser-induced fluorescence,簡稱LIF)。不過由於螢光衍生化方法的產率不穩定與對基質效應的低容許度,故此螢光衍生化的方法並不適用於本研究。
Recently, pharmaceutical residues are an emerging concern in environ- mental research. Large quantities of pharmaceuticals are continuously produced, consumed, and excreted into the environment, but the subsequent environmental occurrence, fate, and effects of these residues are not well understood, especially the work on understanding the chiral pharmaceutical residues in our environ- ment. Chirality should be concerned due to their possible different biological and/or toxicological effects from one another and from the racemate.
Ibuprofen and ketoprofen were used as the model chiral compounds in our study, which are the widely used nonsteroidal anti-inflammatory drugs (NSAIDs) in Taiwan. These two residues have been demonstrated as emerging contami-nants which can cause side effects in organisms and has raised increasing concern about their impact on wildlife and human health.
A method of capillary electrophoresis (CE) with UV detector was developed to determine the ibuprofen and ketoprofen enantiomers in over-the-counter (OTC) drugs sold in Taiwan and environmental water samples. For OTC drugs, the samples were directly dissolved in methanol and filtered before CE analysis. For environmental water samples, they were extracted by solid-phase extraction (SPE). The analytes were then separated and quantitated by CE with 20 mM sodium acetate buffer, consisting of 10 mM CM-β-CD and 30 mM TM-β-CD used as chiral selectors in dual cyclodextrin system, at pH 5.0. Baseline separation of two pair of chiral compounds confirmed the specificity of the method. Less than 18% of quantitation errors comparison with the contents displaying on the drug-packings and our results for selected OTC-drugs proved the accuracy of the method. The limit of quantitation (LOQ) was less than 1.0 µg/L for each enantiomer in 200 mL of environmental water sample. The spiked recoveries of four enantiomers were above 70 % while RSD was below 7.5 %. However, four enantiomers were not detected in five selected environmental water samples.
Furthermore, a fluorescent derivatization procedure and CE-laser-induced fluorescence (LIF) detection methods were developed to enhance the sensitivity and selectivity. However, due to the unstability of the derivatives and the low tolerance to matrix effects, the preliminary results show that CE-LIF was not suitable for this kind of studies.
01.林宛靜,快速分析水環境中醫療藥品殘留物之研究與探討,碩士論文,國立中央大學化學研究所,民國92年。
02.金台寶,近紅外線影像技術在印刷品鑑定方面的應用,印刷科技,第22卷,第3期,21-39,民國96年。
03.陳詩欣,成藥市場成長減速,經濟日報,民國96年。
04.Abushoffa, A. M.; Fillet, M.; Hubert, P.; Crommen, J., Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual cyclodextrin systems, J. Chromatogr. A, 2002, 948, 321-329.
05.Abushoffa, A. M.; Fillet, M.; Servais, A.; Hubert, P.; Crommen, J., Enhancement of selectivity and resolution in the enantioseparation of uncharged compounds using mixtures of oppositely charged cyclodextrins in capillary electrophoresis, Electrophoresis, 2003, 24, 343-350.
06.Ali, I.; Gupta, V. K.; Aboul-Enein, H. Y.; Chiral resolution of some environmental pollutants by capillary electrophoresis, Electrophoresis, 2003, 24, 1360-1374.
07.Baeyens, W. R. G.; Weken, G. V.; Haustraste, J.; Aboul-Enein, H. Y.; Corveleyn, S.; Remon, J. P., Garcia-Campana, A. M.; Deprez, P., Application of the restricted-access precolumn packing material alkyl-diol silica in a column-switching system for the determination of ketoprofen enantiomers in horse plasma, J. Chromatogr. A, 2000, 871, 153-161.
08.Bayle, C.; Couderc, F.; Froehlich, P.; Enhanced sensitivity using laser-induced fluorescence detection with HPLC and capillary electrophoresis, American Biotechnology Laboratory, 2003, April, 30-34.
09.Blanco, M.; Gonz?lez, J. M.; Torras, E., Enantiomeric purity determination of ketoprofen by capillary electrophoresis: evelopment and validation of the method, Anal Bioanal Chem, 2003, 375, 157-163.
10.Bonato, P. S.; Lama, M. P. F. M. D.; Carvalho, R. Enantioselective determination of ibuprofen in plasma by high-performance liquid chromatography–electrospray mass spectrometry, J. Chromatogr. B, 2003, 796, 413-420.
11.Boyd, G. R.; Reemtsma, H.; Grimm, D. A.; Mitra, S., Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada, The Science of the Total Environmental, 2003, 311, 135-149.
12.Chen, M. H., Ding, W. H., Separation and migration behavior of positional and structural naphthalenesulfonate isomers by cyclodextrin-mediated capillary electrophoresis, J. Chromatogr. A, 2004, 1033, 167-172.
13.Chen H. S.; Wang, P. L.; Ding, W. H., Using liquid chromatography-ion trap mass spectrometry to determine pharmaceutical residues in Taiwanese rivers and wastewaters, Chemosphere, 2008, 72, 863-869.
14.Cserh?ti, T.; Forg?cs, E., Effect of carboxymethyl-β-cyclodextrin on the hydrophobicity parameters of steroidal drugs, Carbohydrate Polymers, 1999, 38, 171-177.
15.Daughton, C. G., Non-regulated water contaminants: emerging research, Environmental Impact Assessment, 2004, 24, 711-732.
16.Daughton, C. G.; Ternes, T. A, Pharmaceuticals and personal care product in the environment: agents of subtle change, Environmental Health Perspectives, 1999, 107, 907- 938.
17.Dey, J.; Monhanty, A.; Roy, S.; Khatua, T., Cationic vesicles as chiral selector for enantioseparations of nonsteroidal antiinflammatory drugs by micellar electrokinetic chromatography, J. Chromatogr. A, 2004, 1048, 127-132.
18.Du, X.; Zhang, H.; Deng, Y.; Wang, H. Design and synthesis of a novel fluorescent reagent, 6-oxy-(ethylpiperazine)-9-(2’-methoxycarbonyl) fluorescein, for carboxylic acids and its application in food samples using high-performance liquid chromatography, J. Chromatogr. A, 2008, 1178, 92-100.
19.Ducret, A.; Pepin, T. P.; Lortie, R., Chiral high performance liquid chromotography resolution of ibuprofen esters, J. Pharm. Biomed. Anal., 1998, 16, 1225-1231.
20.Fanali, S.; Aturki, Z., Use of cyclodextrins in capillary electrophoresis for the chiral resolution of some 2-arylpropionic acid non-steroidal anti-inflammatory drugs, J. Chromatogr. A, 1995, 694, 297-305.
21.Farr?, M.; Ferrer, I.; Ginebreda, A.; Figueras, M.; Olivella, L., Determination of drugs in surface water and wastewater samples by liquid chromatography–mass spectrometry: methods and preliminary results including toxicity studies with Vibrio fischeri, J. Chromatogr. A, 2001, 938, 187-197.
22.Fillet, M.; Chankvetadze, B.; Crommen, J.; Blaschke, G., Designed combination of chiral selectors for adjustment of enantioseparation selectivity in capillary electrophoresis, Electrophoresis, 1999, 20, 2691-2697.
23.Fillet, M.; Hubert, P.; Crommen, J., Method development strategies for the enantioseparation of drugs by capillary electrophoresis using cyclodextrins as chiral additives, Electrophoresis, 1998, 19, 2834-2840.
24.Garrison, A. W., Probing the Enantioselectivity of CHIRAL pesticides, Environ. Sci. Technol., 2006, 40, 16-23.
25.Gibson, R.; Becerril-Bravo, E.; Silva-Castro, V.; Jim?nez, B., Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography–mass spectrometry, J. Chromatogr. A, 2007, 1169, 31-39.
26.Gl?wka, F.; Karazniewicz, M., Enantioselective CE method for pharmacokinetic studies on ibuprofen and its chiral metabolites with reference to genetic polymorphism, Electrophoresis, 2007, 28, 2726-2737.
27.Gros, M.; Petrovic, M.; Barcel?, D.; Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters, Talanta, 2006, 70, 678-690.
28.Grushka, E.; Lam, S.; Chassin, J., Fluorescence labeling of dicarboxylic acids for high performance liquid chromatographic separation, Anal. Chem., 1978, 50, 1398-1399.
29.Guo, M.; Zhang, S.; Song, F.; Wang, D.; Liu, Z. Liu, S., Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using electrospray ionization tandem mass spectrometry, J. Mass Spectrom., 2003, 38, 723-731.
30.Gyllenhaal, O.; Stefansson, M., Reversal of elution order for profen acid enantiomers in normal phase LC on Chiralpak AD, J. Pharm. Biomed. Anal., 2008, 46, 860-863.
31.Ha, P. T. T.; Hoogmartens, J.; Schepdael, A. V., Recent advances in pharmaceutical applications of chiral capillary electrophoresis, J. Pharm. Biomed. Anal., 2006, 41, 1–11.
32.Harris, D. C., Quantitative chemical analysis, six edition, 2002, W. H. Freeman and Company.
33.Heo, S.; Cho, S.; Cheon, J.; Choi, M.; Im, D.; Kim, J. J.; Choi, Y. G.; Jeon, D. Y.; Chung, S.; Shim, C.; Kim, D.,Pharmacokinetics and pharmacodynamics of ketoprofen plasters, Biopharm. Drugs Dispos., 2008, 29, 37-44.
34.Huang, C. Z.; Santa, T.; Okabe, K.; Imai, K., Capillary electrophoresis with laser induced-fluorescence detection of profens derivatized with the water-soluble fluorogenic reagent 4-N-(4-N’-aminoethyl)piperazino-7- nitro-2,1,3-benzoxadiazole, J. Chromatogr. A, 2003, 1011, 193-201.
35.Jabor, V. A.; Lanchote, V. L.; Bonato, P. S., Enantioselective analysis of ibuprofen in human plasma by anionic cyclodextrin-modified electrokinetic chromatography, Electrophoresis, 2002, 23, 3041-3047.
36.Jim?nez, M. C.; Miranda, M. A.; Vay?, L., Triplet excited states as chiral reporters for the binding of drugs to transport proteins, J. Am. Chem. Soc., 2005, 127, 10134-10135.
37.Kasprzyk-Hordem, B.; Dinsdale, R. M.; Guwy, A. J., The effect of signal suppression and mobile phase composition on the simultaneous analysis of multiple classes of acidic/neutral pharmaceuticals and personal care products in surface water by solid-phase extraction and ultra performance liquid chromatography–negative electrospray tandem mass spectrometry, Talanta, 2008, 74, 1299-1312.
38.Kibler, M.; B?chmann, K., New derivatization method for carboxylic acids in aqueous solution for analysis by capillary electrophoresis and laser-induced fluorescence detection, J. Chromatogr. A, 1999, 836, 325-331.
39.Klegeris, A.; Maguire, J.; McGeer, P. L., S- but not R-enantiomers of flurbiprofen and ibuprofen reduce human microglial and THP-1 cell neurotoxicity, Journal of Neuroimmunology, 2004, 152, 73-77.
40.Kondo, J.; Suzuki, N.; Naganuma, H.; Imaoka, T.; Kawasaki, T., Nakanishi, A.; Kawahara Y., Enantiospecific Determination of Ibuprofen in Rat Plasma Using Chiral Fluorescence Derivatization Reagent, (-)-2-[4-(1- Aminoethy1)-phenyl]-6-methoxybenzoxazole, Biomed. Chromatogr., 1994, 8, 170-174.
41.Kosjek, T.; Heath, E.; Krbavcic, A., Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples, Environment International, 2005, 31, 679-685.
42.Kr?gel, I.; Bodmeier, R., Development of a multifunctional matrix drug delivery system surrounded by an impermeable cylinder, Journal of Controlled Release, 1999, 61, 43-50.
43.Kubota, K.; Fukushima, T.; Yuji, R.; Miyano, H.; Hirayama, K.; Santa, T.; Imai, K., Development of an HPLC-fluorescence determination method for carboxylic acids related to the tricarboxylic acid cycle as a metabolome tool, Biomed. Chromatogr., 2005, 19, 788-795.
44.K?mmerer, K., Pharmaceuticals in the Environment, Source, Fate, Effects and Risks, 2001, Springer-Verlag, Berlin.
45.Leli?vre, F.; Gareil, P., Chiral separations of underivatized arylpropionic acids by capillary zone electrophoresis with various Cyclodextrins Acidity and inclusion constant determinations, J. Chromatogr. A, 1996, 735, 311-320.
46.Liao, W. S.; Lin, C. H.; Chen, C. Y.; Kuo, C. M.; Liu, Y. C.; Wu, J. C.; Lin, C. E., Enantioseparation of phenothiazines in CD-modified CZE using single isomer sulfated CD as a chiral selector, Electrophoresis, 2007, 28, 3922-3929.
47.Li, C.; Benet, L. Z.; Grillo, M. P., Enantioselective covalent binding of 2-phenylpropionic acid to protein in vitro in rat hepatocytes, Chem. Res. Toxicol, 2002, 15, 1480-1487.
48.Lin, B. L.; Tokai, A.; Nakanishi, J., Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tert-octylphenol detected in the E-SCREEN assay, Environ. Sci. Technol., 2005, 39, 4833-4840.
49.Lin, W. C.; Chen, H. C.; Ding, W. H., Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume on-line derivatization with gas chromatography–mass spectrometry, J. Chromatogr. A, 2005, 1065, 279-285.
50.Lin, X.; Zhu, C.; Hao, A., Evaluation of newly synthesized derivative of cyclodextrin for the capillary electrophoretic separation, J. Chromatogr. A, 2004, 1059, 181-189.
51.Liu, Q.; Inoue, T.; Kirchhoff, J. R.; Huang, C.; Tillekeratne, L. M. V.; Olmstead, K.; Hudson, R. A., Chiral separation of highly negatively charged enantiomers by capillary electrophoresis, J. Chromatogr. A, 2004, 1033, 349-356.
52.L?ffler, D.; Ternes, T. A., Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry, J. Chromatogr. A, 2003, 1021, 133-144.
53.Maci?, A.; Borrull, F.; Calull, M.; Aguilar, C., Different sample stacking strategies to analyse some nonsteroidal anti-inflammatory drugs by micellar electrokinetic capillary chromatography in mineral waters, J. Chromatogr. A, 2006, 1117, 234-245.
54.Magnusson, J.; Wan, H.; Blomberg, L. G., Illustration of a simple and versatile scheme for reversing enantiomeric elution order and facilitating enantiomeric impurity determination in capillary electrophoresis, Electrophoresis, 2002, 23, 3013-3019.
55.Makino, K.; Itoh, Y.; Teshima, D.; Oishi, R., Determination of nonsteroidal anti-inflammatory drugs in human specimens by capillary zone electrophoresis and micellar electrokinetic chromatography, Electrophoresis, 2004, 25, 1488-1495.
56.Ma, L.; Han, J.; Wang, H.; Gu, J.; Fu, R., Capillary electrophoresis enantioseparation of drugs using β-cyclodextrin polymer: Intramolecular synergistic effect, Electrophoresis, 1999, 20, 1900-1903.
57.Matthijs, N.; Hemelryck, S. V.; Maftouh, M.; Massart, D. L.; Heyden, Y. V., Electrophoretic separation strategy for chiral pharmaceuticals using highly-sulfated and neutral cyclodextrins based dual selector systems, Analytical Chemica Acta, 2004, 525, 247-263.
58.McWhorter, S.; Soper, S. A., Near-infrared laser-induced fluorescence detection in capillary electrophoresis, Electrophoresis, 2000, 21, 1267-1280.
59.Oliveira, A. R. M.; Cesarino, E. J.; Bonato, P. S., Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine, J. Chromatogr. B, 2005, 818, 285-291.
60.?llers, S.; Singer, H. P.; F?ssler, P.; M?ller, S. R., Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/ l level in surface and waste water, J. Chromatogr. A, 2001, 911, 225-234.
61.P?ze, X.; Hem?ndez, L., Biomedical Applications of Capillary Electrophoresis with Laser-Induced Fluorescence Detection, Biopharm. Drug Dispos, 2001, 22, 273–289.
62.Penn, S. G. ; He, F.; Green, M. K.; Lebrilla, C. B., The use of heated capillary dissociation and collision-induced dissociation to determine the strenghth of noncovalent bonding interactions in gas-phase peptide-cylcodextrin complexs, J. Am. Soc. Mass Spectrom, 1997, 8, 244-252.
63.Petrovića, M.; Debeljak, Ž.; Blažvić, N., Optimization of gas chromatographic method for the enantioseparation of arylpropionic non-steroidal anti-inflammatory drug methyl esters, J. Pharm. Biomed. Anal., 2005, 39, 531-534.
64.Rahavendran, S. V.; Karnes H. T., Visible diode laser-induced fluorescence detection of phenylacetic acid in plasma derivatized with nile blue and using precolumn phase transfer catalysis, Anal. Chem., 1997, 69, 3022-3027.
65.Skoog, D.A.; Holler, F.J.; Nieman, T.A., Principles of instrumental analysis, fifth edition, 1998, Thomson Learning, Inc.
66.Stumpf, M.; Ternes, T. A.; Wilken, R.; Rodrigues, S. V.; Baumann, W., Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil, The Science of the Total Environment, 1999, 225, 135-141.
67.Tanaka, Y.; Kishimoto, Y.; Terabe, S., Separtion of acidic enantiomers by capillary electrophoresis-mass spectrometry employing a partial filling technique, J. Chromatogr. A, 1998, 802, 83-88.
68.Tanaka, Y.; Terabe, S., Enantiomer separation of acidic racemates by capillary electrophoresis using cationic and amphoteric β-cyclodextrins as chiral selectors, J. Chromatogr. A, 1997, 781, 151-160.
69.Vanderford, B. J.; Pearson, R. A.; Rexing, D. J.; Snyder, S. A., Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry, Anal. Chem., 2003, 75, 6265-6274.
70.Verleysen, K.; Sandra, P., Separation of chiral compounds by capillary electrophoresis, Electrophoresis, 1998, 19, 2798-3833.
71.Vermeulen, B.; Remon, J. P., Validation of a high-performance liquid chromatographic method for the determination of ibuprofen enantiomers in plasma of broiler chickens, J. Chromatogr. B, 2000, 781, 243-251.
72.Vollhardt, K. P. C.; Schore, N. E., Organic chemistry: structure and function, fourth edition, 2002, W. H. Freeman and Company.
73.Wang, Z.; Ouyang J.; Baeyens, W. R. G., Recent developments of enantioseparation techniques for adrenergic drugs using liquid chromatography and capillary electrophoresis: A review, J. Chromatogr. B, 2008, 862, 1-14.
74.Zerbinati, O., Trotta, F., Giovannoli, C., Baggiani, C., Giraudi, G., Vannoi A, New derivatives of cyclodextrins as chiral selectors for the capillary electrophoretic separation of dichlorprop enantiomers, J. Chromatogr. A, 1998, 810, 193-200.
75.Zhu, F.; Zhao, W.; Zhao, X.; Suo, Y.; Liu, S.; You, J., Determination of Free Fatty Acids by High Performance Liquid Chromatography with Fluorescence Detection and Identification with Mass Spectrometry, Chin J Anal Chem, 2007, 35, 489-494.
76.Zohmann, A.; Hawel, R.; Klein, G.; Kullich, W.; L?tsch, G., S(+)-ibuprofen (dexibuprofen)-excellent tolerance has not to be combined with poor clinical efficacy, Inflammopharmacology, 1998, 6, 75-79.