跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡靖芸
Ching-Yun Chien
論文名稱: 利用電化學氧化法調控鎵奈米顆粒之光學性質
Controlling the Optical Spectra of gallium nanoparticles by Electrochemical Oxidation
指導教授: 陳一塵
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 鎵奈米顆粒氧化電漿子共振
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來電漿子學受到關注,開啟了金屬在奈米尺度下進行光學研究的篇章,可藉由改變金屬的奈米結構形狀、結構大小、週期性排列方式等來操控其光性變化,而對奈米金屬進行氧化亦能改變其光學性質,故本篇論文是在磷酸中來對鎵奈米顆粒進行電化學氧化,透過施加不同定電壓值及定電流值,並持續不同時間,氧化後並量測其光學性質之變化。結果顯示隨施加定電壓的時間增加,光譜特徵峰紅位移的量也隨之增加,但特徵峰也會逐漸寬化而變得不明顯,而施加的電壓值大小亦影響了最大可紅位移量及得到最大紅移量所需時間:給予的定電壓值愈大,特徵峰之最大紅移量愈少,所需時間愈短;電壓小則反之。鎵奈米粒子在經由電化學氧化後,其形貌會有凹陷變形,文獻中表明氧化鎵的增厚對電漿子共振之紅位移量貢獻有限,本研究亦透過高溫熱氧化法使鎵奈米粒子氧化,其光譜紅移量亦相當有限,故推測電化學氧化造成的紅位移多是來自變形的貢獻。經由電化學氧化法已可調控鎵奈米粒子電漿子共振的紅位移量,為求能調控特徵峰的位移及重複調控,本研究將試片浸泡於氫氧化鈉溶液中以蝕刻掉氧化層,結果顯示蝕刻後鎵奈米粒子粒徑縮小且變回如未氧化前之球形,光譜特徵峰亦藍移,再次施加電壓後依然可再氧化並紅移,且可紅移量依然有接近40~50 nm,故最終可藉電化學氧化搭配氫氧化鈉濕蝕刻法達到調控光譜的目的。


    The plasmonic response of metallic nanoparticles to external electromagnetic fields makes them attractive for a wide range of applications. In this study, the effect of the oxidation of gallium nanoparticles (Ga NPs) on their plasmonic properties is investigated. Electrochemical oxidation treatments, varying voltage and time, were carried out in order to increase experimentally the Ga2O3 shell thickness in the NPs.
    In the result, a clear redshift of the peak wavelength is observed, and the gallium nanoparticles would deform. The less redshift by applying the higher voltage and vice versa. Several research implied that oxidation makes slight red-shift, we consider that the deformation is the main reason to cause large redshift. In order to make the spectrum tunable, we try to etch the gallium oxide layer after electrochemical oxidation by dipping in NaOH solution and it can make the spectrum blue-shift. The dissertation successfully figure out a method to make the spectrum of gallium nanoparticles tunable.

    摘要 I Abstract II 圖目錄 VI 表目錄 X 第一章 緒論 1 第二章 文獻回顧 2 2-1電漿子學 2 2-1-1電漿子學的發展 2 2-1-2表面電漿子共振 2 2-1-3影響電漿子共振的因素 3 2-2鎵 12 2-2-1鎵的電漿子特性 12 2-2-2鎵氧化對電漿子共振的影響 14 第三章 研究方法 16 3-1 實驗流程 16 3-2 實驗材料及設備 16 3-3 實驗步驟 17 第四章 結果探討 19 4-1 不同電化學電解酸液對鎵奈米顆粒的影響 19 4-1-1 鎵奈米顆粒浸泡於不同酸液後之形貌變化 19 4-1-2 鎵奈米顆粒浸泡於不同酸液後之光學性質變化 21 4-2 氧化後之光學性質量測 21 4-2-1 定電壓氧化 21 4-2-2 電壓值與最大紅移量之關係 33 4-2-3 定電流氧化 35 4-2-4 升溫熱氧化 40 4-3 利用XPS進行縱深分析 42 4-4 以氫氧化鈉配合電化學氧化調控鎵奈米粒子光性變化 47 4-4-1 以氫氧化鈉蝕刻鎵奈米粒子之氧化層 47 4-4-2 蝕刻後之鎵奈米粒子再行電化學氧化 49

    [1] S Catalán.Gómez, A Redondo.Cubero, F J Palomares,F Nucciarelli and J L Pau, Nanotechnology 28 (2017)
    [2] R. W. Wood, Philos. Mag. 4, 396, (1902)
    [3] U. Fano, J. Opt. Soc. Am., 31, 213, (1941).
    [4] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275, (1965).
    [5] F.J. Garcia. Vidal, L.Martin.Moreno, T.W.Ebbesen and L. Kuipers,Rev. Mod.Phys, 82, 729 ,(2010).
    [6] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667, (1998).
    [7] W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B,59, 12661 ,(1998).
    [8] J. A. Porto, F. J. Garcia.Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
    [9] L. Martin.Moreno, F. J. Garcia.Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001)
    [10] Matthew Rycenga, Claire M. Cobley, Jie Zeng, Weiyang Li, Christine H. Moran, Qiang Zhang, Dong Qin,and Younan Xia, Chem. Rev., 111,(2011)
    [11] S. A. Maier, H. A. Atwater, J. Appl. Phys., 98, (2005).
    [12] K. A. Willets,. R. P. R.. Duyne, Rev. Phys. Chem., 58, 267, (2007)
    [13] S. Link, M. A. E.Sayed, J. Phys. Chem. B, 103, 4212, (1999)
    [14] Pae C Wu, Plasmonic Gallium Nanoparticles – Attributes and Applications,(2009)
    [15] R. H. J. Doremus, Chem. Phys., 40, 2389, (1964)
    [16] J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo,H. O. Everitt,and F. Moreno, J. Phys. Chem. C, 117, (2013)
    [17] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, ACS Nano 8(1), (2014).
    [18] A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek,F. Uherek, and D. Donoval, J. Appl. Phys 112(10), 103531 (2012).
    [19] Hunderi O and Ryberg R, J. Phys. F: Met. Phys.,4,2084,(1974)
    [20] Wu P C, Kim T.H, Brown A S, Losurdo M, Bruno G and Everitt H O,Appl. Phys. Lett.,90,103119,(2007)
    [21] Kang M, Formation and properties of metallic nanoparticles on compound semiconductor surfaces,(2014)
    [22] X. F. Li, G. T. Fei, X. M. Chen, Y. Zhang, K. Zheng, X. L. Liu and L. D. Zhang EPL (Europhysics Letters), 94, 1, (2011).
    [23] J. M. McMahon, G. C. Schatz, S. K. Gray, Phys. Chem. Chem. Phys., 15, 5415, (2013).
    [24] G. V. Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater., 25, 3264, (2013)
    [25] Greuter, F. and P. Oelhafen. ,Zeitschrift für Physik B Condensed Matter 34, no. 2: 123-128,(1979)
    [26] Nanda, K. K., S.N. Sahu, and S.N. Behera., Physical Review A 66: 013208,(2002)
    [27] J. Bowen, D. Cheneler, A. P. G. Robinson, Microelectronic Engineering, 97, 34, (2012)
    [28] Ohring, Milton.. The Materials Science of Thin Films,(1992)
    [29] Catalán-Gómez S, Redondo-Cubero A, Palomares F J,Nucciarelli F and Pau J L ,Nanotechnology ,28, 405705,(2017)
    [30] Yael Gutierrez, Dolores Ortiz, Juan M. Sanz, Jose M. Saiz, Francisco Gonzalez, Henry O. Everitt, and Fernando Moreno, Optics Express Vol. 24, Issue 18, pp. 20621-20631 (2016)
    [31] M. Scholten and J. E. A. M. van den Meerakker, J. Electrochem. Soc., Vol. 140, No. 2, (1993)
    [32] Hoyer W, Thomas E and Wobst M,Krist. Tech.,15 ,903–10,(1980)
    [33] Li L, Wei W and Behrens M,Solid State Sci.14 971–81,(2012)
    [34] Catalán-Gómez S1, Redondo-Cubero A, Palomares FJ, Vázquez L, Nogales E, Nucciarelli F, Méndez B, Gordillo N, Pau JL., Nanotechnology,29,(2018)
    [35] Surdu-Bob C C, Saied S O and Sullivan J L,Appl. Surf. Sci.183126–36,(2001)
    [36] Carli R and Bianchi C L ,Appl. Surf. Sci.7499–102,(1994)
    [37] F. S. Aguirre-Tostado,a M. Milojevic,C. L. Hinkle,E. M. Vogel,R. M. Wallace,,bS. McDonnell,and G. J. Hughes,Appl. Physics Letters 92(17) (2008)
    [38] Jie Zhang, Lei Sheng and Jing Liu, Scientific Reports 4, 7116 (2014)
    [39] Rongchao Ma, Yixin Zhou, Jing Liu, Applied Physics,(2017)

    QR CODE
    :::