跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張中平
Chung-Ping Chang
論文名稱: 共光程干涉儀系統之研發與應用
Development and Application of Common Path Interferometer System
指導教授: 董必正
Pi-Cheng Tung
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 85
中文關鍵詞: 干涉式位移量測共光程折疊式共振腔訊號處理模組優化
外文關鍵詞: Interferometric displacement measurement, Common path, Folded resonant cavity, Modified signal processing module
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高精度的測長及定位是機械產業發展及升級不可或缺之主要工具,其中,雷射干涉儀可於長距離量測的範圍內同時保有高解析度之特性,此乃一般長度量測技術所不及者。
    但一般的干涉儀因易受環境擾動所干擾,因而並無法適應精密機械產業的工作環境。因此,開發適用於一般環境之干涉儀系統為精密機械產業升級的重要關鍵。由以往的研究成果中可知,共光程架構的Fabry-Perot干涉儀具有較佳的抗環境擾動能力。
    有鑒於此,本研究為因應精密機械產業的檢測需求,透過光機架構的改良,設計可變光路之共光程干涉儀系統。此架構包含平面鏡式Fabry-Peort干涉儀系統,可用於量程短、機台幾何精度較高的檢測需求;另外折疊腔式Fabry-Peort干涉儀系統,適用於量程大、一般機台幾何精度的檢測需求。透過光路結構及訊號處理模組的優化,可調整干涉儀系統之量測範圍及解析度,並擴大此類干涉儀於精密機械產業之適用範疇。
    本文所完成之系統,由實驗結果得知,於一般環境下的解析度小於5 nm,量測範圍可達500 mm,精度為±0.5 μm (±3σ),線性度為1 ppm F.S.。透過產業的實際應用,證實本系統具有長行程位移量測及精密機械校正的能力。


    Precision measurement technology is the one of the critical points of the development of precision mechanical industry. Because the laser interferometers possess the measuring features of large measuring range and high resolution simultaneously, they play an important role in the modern length measurement technology.
    Because of the rapid development of the precision mechanical industry, the requirements of the measurement parameters are enhanced. The conventional measurement technologies cannot meet these requirements. For this reason, interferometric technology is used in the precision mechanical industry wildly. But the conventional interferometric technology cannot demonstrate its characteristics of high precision under the ordinary environment. Therefore, the interferometer cannot yield expected results in the application of precision mechanical industry.
    In summary, the key of the upgrading of precision mechanical industry is to develop the interferometer which can be used in ordinary environment. By the past research, Fabry-Perot interferometer is possessed of the optical structure of the common path. Due to the optical arrangement, Fabry-Perot interferometer can be more insensitive to the environmental disturbances. By the design of the optical structure, the measuring range of Fabry-Perot interferometer can be enlarged up to 500 mm. For this reason, the application of Fabry-Perot interferometer can be more valuable in the field of precision measurement.
    In view of this situation, for the measuring condition of the precision mechanical industry under the fluctuating environments, a Fabry-Perot interferometer with the variable optical structures has been proposed. One of the structures is plane-mirror Fabry-Peort interferometer system utilized in small range, high precision and fine mechanical tolerance situations. Another structure is folded Fabry-Peort interferometer system which can be performed in large range and mechanical tolerance situations. By the development of the common path interferometer , the novel arrangement of the optical structure and the optimization of the signal processing model, the measuring range and the resolution of the proposed interferometer can be enhanced. With the aid of this interferometric technology, applications of the common path interferometer for precision mechanical industry can be promoted.
    With this development, the interferometric system will be available. From the experimental results, the measuring range is larger than 500 mm, precision is ±0.5μm (±3σ) and linearity is about 1 ppm F.S.. The experimental resolution is less than 4 nm. Finally the application experiment, the proposed interferometer system is suitable for the precision mechanical industry purpose.

    Contents 摘 要 I ABSTRACT II Contents IV List of Figure VI List of Table VIII Symbols List IX I. Introduction 1 1.1 Background and Motivation 1 1.2 Interferometric Displacement Measurement 2 1.2.1 Technique Development 3 1.2.2 Review of Applications 7 1.3 Thesis Outline 12 II. Measurement Principle 13 2.1 Displacement Measuring Interferometer 13 2.1.1 Fabry-Perot Interferometer 13 2.1.2 Folded Fabry-Perot Interferometer 17 2.2 Novel Modified Interferometer 20 2.2.1 Optical Structure 20 2.2.2 Simulation and Analysis 22 2.2.3 Modeling of Interferometric Signal Processing 24 III. Design of the Interferometer System 28 3.1 Optomechantronic System 29 3.1.1 Optomechanics Structure 30 3.1.2 Signal Processing Module 31 3.2 Verification of Measurement Characteristics 32 3.2.1 Resolution Verification 33 3.2.2 Stability of Interferometer System 36 3.2.3 Testing of Auto Gain Control Module 38 3.2.4 Interpolation model 39 3.2.5 Verification of the Measuring Range 42 3.2.6 Systems Specifications 45 3.3 Method of Comparison Experiment 45 3.3.1 Vibration Measurement 46 3.3.2 Displacement Measurement 46 3.3.2.1 Planar Mirror Type 47 3.3.2.2 Corner Cube Reflector Type 48 3.4 Industrial Application 49 IV. Experimental Results and Analysis 51 4.1 Comparison Experiments 51 4.1.1 Vibration Measurement 51 4.1.2 Displacement Measurement with Planar Mirror Type 54 4.1.3 Displacement Measurement with CCR Type 56 4.2 Calibration results of linear positioning 58 4.3 Error Analysis of Interferometer System 61 4.3.1 Wavelength Error 61 4.3.2 Interpolation Error 62 4.3.3 Geometric Error 64 4.4 Uncertainty Evaluation 66 V. Conclusion 68 Reference 70

    [1] G. Jäger, E. Manske, T. Hausotte, H. J. Büchner, “Nanomeasuring and Nanopositioning Engineering”, Fringe 2009 - 6th International Workshop on Advanced Optical Metrology, Springer Berlin Heidelberg, pp. 1-8, 2009.
    [2] M. Holmes, C. Evans , “Displacement Measuring Interferometry Measurement Uncertainty”, Zygo on-line resource, http://www.aspe.net/publications/Summer_2004/04SU%20Extended%20Abstracts/Holmes-Evans-1645.PDF
    [3] Renishaw XL-80 laser measurement system, on-line resource, http://www.renishaw.com/media/pdf/en/4c8e751a4b6b496ba5bc3d3c0de7bef9.pdf
    [4] Zygo Stage Position Metrology, on-line resource, http://www.zygo.com/?/met/markets/stageposition/zmi/
    [5] SIOS Miniature Retroreflector Interferometer MI Series, on-line resource, http://www.sios.de/ENGLISCH/PRODUKTE/MI_E_2012.HTM
    [6] attocubeFPSensor, online resource, http://marketing.attocube.com/acton/attachment/4434/f-0006/0/-/-/-/-/file.pdf
    [7] T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)”, Metrologia, Vol. 40, pp. 103-133, 2001.
    [8] Y. C. Wang, L. H. Shyu and C. P. Chang, “The Comparison of Environmental Effects on Michelson and Fabry-Perot Interferometers Utilized for the Displacement Measurement”, Sensors, Vol. 10, pp. 2577-2586, 2010.
    [9] S. J. Lin, “Inspection System Utilized for Axial Motion Parameters”, Maseter Thesis, National Yunlin University of Science and Technology, 2008.
    [10] SIOS Stabilized HeNe Laser, on-line resource, http://www.sios.de/ENGLISCH/PRODUKTE/SL_E_2012.HTM
    [11] H. Elfström, A. Lehmuskero, T. Saastamoinen, M. Kuittinen and P. Vahimaa, “Common-path Interferometer with Diffractive Lens“, Optics Express, Vol.14, No.9, pp. 3847-3852, 2006.
    [12] X. H. Qu, L. H. Wang and Y. X. Fu, “Common-path Laser Interferometer”, Optics Letters, Vol. 34, No. 24, pp. 3809-3811, 2009.
    [13] K. Kamiya, T. Nomura, S. Hidaka, H.Tashiro, M. Mino, S. Okuda, “Displacement Sensor by a Common-path Interferometer”, ASPE Proceedings, St. Louis, Missouri, October 20-25, 2002.
    [14] J. R. Lawall, “Fabry–Perot metrology for displacements up to 50 mm”, J. Opt. Soc. Am. A, Vol. 22, No. 12, pp. 2786-2798, 2005.
    [15] K. A. R. B. Pietraszewski, “Recent Developments in Fabry-Perot Interferometer”, ASP Conference Series, Vol. 195, pp. 591-596, 2000.
    [16] K. N. Joo, J. D Ellis, J. W Spronck and R. H M. Schmidt, “Design of a Folded, Multi-pass Fabry–Perot Cavity for Displacement Metrology”, Measurement Science and Technology. Vol. 20, pp. 107001(5), 2009.
    [17] H. V. D. Stadt, “A Folded Fabry-Perot Diplexer of Triangular Shape”, Tenth International Symposium on Space Terahertz Technology, Charlottesville, pp. 334-346, March 1999.
    [18] P. Rabinowitz, S. F. Jacobs, T. Shultz, and G.Gould, “Cube-corner Fabry-Perot interferometer” Journal of the Optical Society of America, Vol. 52, No.4, pp. 452-453, 1962.
    [19] E. R. Peck, “A New Principle in Interferometer Design”, Journal of the Optical Society of America, Vol. 38, No. 1, pp. 66, 1984.
    [20] J. A. Arnaud, "Degenerate Optical Cavities", Applied Optics, Vol. 8, No. 1, pp. 189-196, 1969.
    [21] Y. C. Wang, L. H. Shyu and C. P. Chang, “Finesse Effect on the Measurement Accuracy of Fabry-Perot Interferometrical Displacement Measurement”, International Conference Management of Technology - Step to Sustainable Production, Rovinj, No. 156, June 2-4, 2010.
    [22] K. A. Murphy, M. F. Gunther, A. M. Vengsarkar and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors”, Optics Letters, Vol 16, No. 4, pp. 273-275, 1991.
    [23] Renishaw XR20-W rotary axis calibrator, on-line resource, http://www.renishaw.com/media/pdf/en/7f76ef2d70d34535b6be69793a3fb219.pdf
    [24] Zygo Semiconductor Systems, on-line resource, http://www.zygo.com/?/met/markets/semicon/
    [25] SIOS Nanopositioning and Nanomeasuring Machine, on-line resource, http://www.sios.de/ENGLISCH/PRODUKTE/NMM-1_e_2013.pdf
    [26] J. M. Vaughan, “Fabry-Perot interferometer History, Theory, Practice and Applications,” Adam Hilger, pp. 1-43, 1989.
    [27] L. H. Shyu, Y. C. Wang, J. C. Lin, “A Compact Signal Processing with Position Sensitive Detectors Utilized for Michelson Interferometer”, Key Engineering Materials Vol. 437, pp. 98-102, 2010.
    [28] L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung and E. Manske, “Investigation on Displacement Measurements in the Large Measuring Range by Utilizing Multibeam Interference“, Sensor Letters, Vol. 10, No. 5-6, pp. 1109-1112, 2012.
    [29] C. P. Chang, P. C. Tung, L. H. Shyu, Y. C. Wang, E. Manske, “Modified Fabry-Perot Interferometer for Displacement Measurement in Ultra Large Measuring Range”, Review of Scientific instrument, Vol. 84, Issue 5, pp. 053105, 2013.
    [30] L. H. Shyu, C. P. Chang, and Y. C. Wang, “Influence of Intensity Loss in the Cavity of a Folded Fabry-Perot Interferometer on Interferometric Signals”, Review of Scientific instrument, Vol. 82, No. 6, 063103, 2011.
    [31] Measurement Computing DAQ USB-2537, http://www.mccdaq.com/usb-data-acquisition/USB-2537.aspx
    [32] SIOS Miniature Retroreflector Interferometer MI Series, on-line resource, http://www.sios.de/ENGLISCH/PRODUKTE/SP_E_2012.HTM
    [33] International Standard: ISO 230-2, “Test for Machine Tools – Part 2: Determination of Accuracy and Repeatability of Positioning Numerically Controlled Axes”, Third edition, 2006.
    [34] JCGM 100: 2008, “Evaluation of Measurement data – Guide to the Expression of Uncertainty in Measurement”, First edition, 2008.
    [35] J. Ellis, K. N. Joo, A. Verlaan, J. Spronck and R. M. Schmidt, “Uncertainty Considerations for Interferometrics Stability Testing”, Proceedings of the 23rd Annual Meeting, October 2008.
    [36] Top Work Industry TG-5 PLUS 4/5-Axis CNC Tool Grinder, on-line resource, http://www.tool-cutter-grinder-topwork.com/tool-grinder/TG-5.htm
    [37] T. Hausotte, B. Percle, E. Manske, R. Füßl and G Jäger, “Measuring Value Correction and Uncertainty Analysis for Homodyne Interferometers”, Measurement Science and Technology, Vol. 22, pp.093028, 2011.
    [38] G. Jäger, “Limitations of Precision Length Measurements Based on Interferometers”, XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, pp.1915-1919, September 6-11, 2009.

    QR CODE
    :::