跳到主要內容

簡易檢索 / 詳目顯示

研究生: 施博淦
Po-kuan Shih
論文名稱: 應用高階統計之特徵法自動調變辨識技術
A Feature-Based Automatic Modulation Classification Technique Using High-Order Statistics
指導教授: 林嘉慶
Jia-chin Lin
張大中
Dah-chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 99
語文別: 英文
論文頁數: 59
中文關鍵詞: 特徵法自動調變辨識多路徑衰減通道自回歸通道模型統計量高 階統計值
外文關鍵詞: feature-based AMC (FB-AMC), multipath fading channel, autoregressive channel model, high-order statistics, cumulant
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在訊號辨識的領域裡,自動訊號辨識是一門古典的題目。這項技術較常應用在當傳送訊號具有可適性時的情況。針對通過非AWGN通道的訊號進行辨識的工作至今仍是一項困難的挑戰,高階統計法是最常被設計應用於針對此狀況的辨識技術。我們使用高階統計參數來估測通道係數,並使用累計量來設計一個多階層決策架構。我們將討論在靜態和時變通道模型下的演算法差異,並比較在不同接收條件下的辨識率。


    Automatic modulation classification (AMC) is a classical topic in signal classification field. This technique is often used when the transmitted signals are adaptive. So far, recognition of signals passing through non-AWGN channels is still a hard task. High-order statistics is the most adopted method of being designed for classification in non-AWGN situations. We use high-order statistical parameters to obtain estimated channel coefficients and design a multiple-layered decision structure with cumulants. We will discuss the difference of algorithms for static and time-varying channel models, and compare the classification rate in different receiving conditions.

    Contents .................................................................................. III List of Figures .......................................................................... V List of Tables ........................................................................... VI Chapter 1 Introduction ............................................................ 1 1.1 Background .......................................................................................................... 1 1.2 Motivation ............................................................................................................ 2 1.3 Organization ......................................................................................................... 3 Chapter 2 Classification Algorithm ........................................ 4 2.1 Performance Measurement ................................................................................... 4 2.2 Categories of Classification Algorithms .............................................................. 5 2.3 High-Order Statistics ............................................................................................ 6 2.3.1 Basic Introduction.......................................................................................... 6 2.3.2 Gaussian Processes ........................................................................................ 9 2.4 System Description ............................................................................................ 10 2.5 AWGN Channels ................................................................................................ 11 2.6 Multipath Fading Channels ................................................................................ 13 2.6.1 Signal Model................................................................................................ 14 2.6.2 Normalized Cumulant Feature ..................................................................... 14 2.6.3 Received Cumulant...................................................................................... 15 2.6.4 Channel Preprocessing-Fixed Tap Position ................................................. 16 Chapter 3 Proposed Algorithm ............................................. 19 3.1 Preliminary ......................................................................................................... 19 3.2 HOS Features Selection ..................................................................................... 19 3.3 Decision Technique ............................................................................................ 21 3.4 Channel Preprocessing-Most Dominant Path .................................................... 23 3.5 Time-Varying Multipath Channels .................................................................... 26 3.5.1 Signal Model................................................................................................ 26 3.5.2 Received Cumulants .................................................................................... 27 3.5.3 Modified Algorithm-Partial Statistics ......................................................... 27 Chapter 4 Simulation Results ................................................ 30 4.1 AWGN Channels ................................................................................................ 30 4.2 Static Multipath Channels .................................................................................. 32 4.2.1 Comparison with Single Cumulant, {BPSK, QPSK} ................................. 33 4.2.2 Comparison with Single Cumulant, {BPSK, QPSK, 16QAM, 64QAM} ... 35 4.2.3 Comparison with Decision Tree .................................................................. 37 4.3 Time-Varying Multipath Channels .................................................................... 43 4.4 Performance Analysis ........................................................................................ 45 Chapter 5 Conclusions ........................................................... 46 Appendix .................................................................................. 47 A. Signal Model for Static Channels ........................................................................ 47 B. Signal Model for Time-Varying Channels .......................................................... 53 Bibliography ............................................................................ 57

    [1] L. Bixio, G. Oliveri, M. Ottonello, and C. S. Regazzoni, "OFDM recognition
    based on cyclostationary analysis in an open spectrum scenario," in 2009 IEEE
    69th Vehicular Technology Conference, 2009, pp. 1-5.
    [2] J. Mitola III, "Cognitive radio for flexible mobile multimedia communications ,"
    in 1999 IEEE Int. Workshop on Mobile Multimedia Communications, 1999, pp.
    3-10.
    [3] T. Yucek and H. Arslan, "A novel sub-optimum maximum-likelihood modulation
    classification algorithm for adaptive OFDM systems ," in 2004 IEEE Wireless
    Communications and Networking Conf., 2004, pp. 739-744.
    [4] O.A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, "Survey of automatic modulation
    classification techniques: classical approaches and new trends," IET
    Communications, vol. 1, no. 2, pp. 137-156, Apr. 2007.
    [5] A. Swami and B.M. Sadler, "Hierarchical digital modulation classification using
    cumulants," IEEE Trans. on Communications, vol. 48, no. 3, pp. 416-429, Mar.
    2000.
    [6] L. Yang, Z. Ji, X. Xu, X. Dai, and P. Xu, "Modulation classification in multipath
    fading environments," in 2007 4th Int. Symp. on Wireless Communication
    Systems, 2007, pp. 171-174.
    [7] N. An, B. Li, and M. Huang, "Modulation classification of higher order MQAM
    signals using mixed-order moments and Fisher criterion," in 2010 The 2nd Int.
    Conf. on Computer & Automation Engineering, 2010, pp. 150-153.
    [8] W. Su, J. L. Xu, and M. Zhou, "Real-time modulation classification based on
    maximum likelihood," IEEE Communications Letters, vol. 12, no. 11, pp.
    801-803, Nov. 2008.
    [9] S. Lesage, J.Y. Tourneret, and P.M. Djuric, "Classification of digital modulations
    by MCMC sampling," in Proc. 2001 IEEE Int. Conf. on Acoustics, Speech &
    Signal Processing, 2001, pp. 2553-2555.
    [10] F. Hameed, O. A. Dobre, and D. C. Popescu, "On the likelihood-based approach
    to modulation calssification," IEEE Trans. on Wireless Communications, vol. 8,
    no. 12, pp. 5884-5892, Dec. 2009.
    [11] E.E. Azzouz. and A.K. Nandi, "Algorithms for automatic modulation recognition
    of communication signals," IEEE Trans. on Communications, vol. 46, pp. 431-436, Apr. 1998.
    [12] F. Wang and X. Wang, "Fast and robust modulation classification via
    Kolmogorov-Smirnov test," IEEE Trans. on Communications, vol. 58, no. 8, pp.
    2324-2332, Aug. 2010.
    [13] K. C. Ho, W. Prokopiw, and Y. T. Chan, "Modulation identification of digital
    signals by the wavelet transform," IEE Proc. Radar, Sonar, & Navigation, vol.
    147, no. 4, pp. 169-176, Aug. 2000.
    [14] L. Hong and K.C. Ho, "Identification of digital modulation types using the
    wavelet transform," in Proc. 1999 IEEE Military Communications, 1999, pp.
    427-431.
    [15] Henry Stark and John W. Woods, Probability and Random Processes with
    Applications to Signal Processing, 3rd ed.: Prentice Hall, 2002.
    [16] C. L. Nikias and A.P. Petropuou, Higher-Order Spectral Analysis.: Prentice Hall,
    1993.
    [17] P. Li, F. Wang, and Z. Wang, "Algorithm for modulation recognition based on
    high-order cumulants and subspace decomposition," in 2006 8th Int. Conf. on
    Signal Processing, 2006.
    [18] W. Akmouche, "Detection of multicarrier modulations using 4th-order
    cumulants," in Proc. 1999 IEEE Military Communications, 1999, pp. 432-436.
    [19] A. M. Al-Smadi, "AR model identification using higher order statistics," in 2007
    IEEE Int. Conf. on Computer Systems & Applications, 2007, pp. 588-591.
    [20] L. Chen, H. Kusaka, M. Kominami, and Q. Yin, "Blind identification of
    noncausal AR models based on higher-order statistics," IEEE Trans. on Signal
    Processing, vol. 48, no. 1, pp. 27-36, Jan. 1996.
    [21] H. H. Chiang and C. L. Nikias, "Adaptive deconvolution and identification of
    nonminimum phase FIR systems based on cumulants," IEEE Trans. on
    Automatic Control, vol. 35, no. 1, pp. 36-47, Jan. 1990.
    [22] T. Mei, F. Yin, and J. Wang, "Blind source separation based on cumulants with
    time and frequency non-properties," IEEE Trans. on Audio, Speech, & Language
    Processing, vol. 17, no. 6, pp. 1099-1108, Aug. 2009.
    [23] L. Shen, S. Li, S. Song, and F. Chen, "Automatic modulation classification of
    MPSK signals using high order cumulants," in 2006 8th Int. Conf. on Signal
    Processing, 2006.
    [24] J. C. Lin, "Blind equalisation technique based on an improved constant modulus
    adaptive algorithm," IEE Proc. Communications, vol. 149, no. 1, pp. 45-50, Feb.
    2002.
    [25] M.R. Mirarab and M.A. Sobhani, "Robust modulation classification for
    PSK/QAM/ASK using higher-order cumulants," in 2007 6th Int. Conf. on
    Information, Communications & Signal Processing, 2007, pp. 1-4.
    [26] H.C. Wu, M. Saquib, and Z. Yun, "Novel automatic modulation classification
    using cumulant features for communications via multipath channels," IEEE
    Trans. on Wireless Communications, vol. 7, no. 8, pp. 3098-3105, Aug. 2008.
    [27] V.D. Orlic and M. L. Dukic, "Multipath channel estimation algorithm for
    automatic modulation classification using sixth-order cumulants," IEEE
    Electronics Letters, vol. 46, no. 19, p. 1348, Sep. 2010.
    [28] B. Ramkumar, T. Bose, and M. S. Radenkovic, "Robust multiuser automatic
    modulation classifier for multipath fading channels," in 2010 IEEE Symp. on
    New Frontiers in Dynamic Spectrum, 2010, pp. 1-10.
    [29] V. Orlic and M.L. Dukic, "Algorithm for automatic modulation classification in
    multipath channel based on sixth-order cumulants," in 2009 9th Int. Conf. on
    Telecommunication in Modern Satellite, Cable & Broadcasting Services, 2009,
    pp. 423-426.
    [30] C.S. Park and D.Y. Kim, "A novel robust feature of modulation classification for
    reconfigurable software radio," IEEE trans. on Consumer Electronics, vol. 52,
    no. 4, pp. 1193-1200, Nov. 2006.
    [31] G. Han, J. Li, and C. Chen, "A robust MDPSK modulation classifier based on
    cumulants," in 2003 17th Int. Conf. on Advanced Information Networking &
    Applications, 2003, pp. 265-268.
    [32] Z. Shan, Z. Xin, and W. Ying, "Improved modulation classification of MPSK
    signals based on high order cumulants," in 2010 2nd Int. Conf. on Future
    Computer & Communication, 2010, pp. 444-448.
    [33] G. Sun, "MPSK signals modulation classification using sixth-order cumulants,"
    in 2010 3rd Int. Congr. on Image & Signal Processing, 2010, pp. 4404-4407.

    QR CODE
    :::