跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭丞謨
Cheng-Mo Zheng
論文名稱: H∞模糊系統控制-寬鬆變數法
H∞ satbilition analysis for fuzzy control system
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 74
中文關鍵詞: 模糊系統
外文關鍵詞: fuzzy
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是研究狀態回饋控制以及 H∞ 性能的模糊控制穩定性分析 , 本論文將分成兩部分來進行討論 ,
    第一部份先推導(控制)系統滿足 Lyapunov 穩定的檢測條件 。
    第二部分考慮干擾的影響 , 推導出使受控系統滿足 H∞ 穩定的檢測條件 。
    對於一個具非線性特徵的 Takagi-Sugeno(T-S) 模糊系統 , 在新的寬鬆充分條件之下保證其穩定 。
    無論是連續或者離散時間的模糊(控制)系統都是用相似的方法(檢測條件 LMIs)來探討 。
    本篇論文是針對一個前件部相依的 Lyapunov 函數(premise-dependent Lyapunov function)來探討 T-S 模糊系統的穩定條件 ,
    而以前的文獻一般都是用單一矩陣 P(common P) 來推導所需的檢測條件 。
    對於穩定與性能分析以及控制器的設計目前都是用 LMI 以及數值分析來處理運算 ,
    這些採用前件部相依的 Lyapunov 函數(premise-dependent Lyapunov function)
    經數理證明及電腦模擬的結果都比現存文獻採用單一矩陣 P(common P) 的結果寬鬆 。


    In this paper, sufficient LMI conditions for the H∞ state feedback
    control synthesis of fuzzy control systems consisting of Takagi-Sugeno
    fuzzy models are proposed for continuous- and discrete-time fuzzy sys-
    tem in a unified manner. Based on a premise-dependent Lyapunov func-
    tion, we release the conservatism that commonly exists in the common
    P approach. Particularly, the restriction embedded in continuous-time
    systems on derivative of μ is removed by introducing Lie derivative to
    the Lyapunov approach. It is shown that the slack variables employed in
    this paper provide additional feasibility in solving the H∞ stabilization
    problem of fuzzy control systems. Consequently, the stabilization condi-
    tions are shown to be more relaxed than others in the existing literature.
    Numerical simulations appear promising for the proposed method and
    illuminate the reduction of conservatism clearly.

    論文摘要 I 致謝 III 圖目 VII 第一章 簡介 1 1.1 文獻回顧 1 1.2 研究動機 2 1.3 論文結構 3 1.4 符號標記 4 1.5 預備定理 4 1.6 線積分模糊Lyapunov 函數 7 第二章 系統架構與穩定條件 10 2.1 系統架構 10 2.2 共同P檢測條件 11 2.3 非共同P檢測條件 12 第三章 控制系統架構與穩定條件 20 3.1 控制系統架構 20 3.2共同P檢測條件 21 3.3非共同P檢測條件 22 第四章 電腦模擬:控制系統 29 4.1純系統 29 4.2 連續控制系統 34 4.3 離散控制系統 38 第五章 系統架構與H∞定理 42 5.1 H∞定理 42 5.2 數學模型 43 5.3共同P檢測條件 44 5.4非共同P檢測條件 47 第六章 電腦模擬:控制與性能 61 6.1 H∞ 連續系統 61 6.2 H∞ 離散系統 67 第七章 總結與未來研究方向 69 7. 總結 69 7. 未來研究方向 70 參考文獻 71

    [1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
    to modelling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
    116–132, Jan. 1985.
    [2] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix In-
    equality Approach. New York, NY: John Wiley & Sons, Inc., 2001.
    [3] H. Ying, “Sufficient conditions on uniform approximation of multivariate functions
    by Takagi-Sugeno fuzzy systems with linear rule consequent,” IEEE Trans. Syst.,
    Man, Cybern. A: Systems and Humans, vol. 28, no. 4, pp. 515–520, Apr. 1998.
    [4] H. Wang, J. Li, D. Niemann, and K. Tanaka, “T-S fuzzy model with linear rule
    consequence and PDC controller: a universal framework for nonlinear control
    systems,” in Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio, TX., 2000,
    pp. 549–554.
    [5] K. Tanaka, T. Taniguchi, and H. Wang, “Generalized Takagi-Sugeno fuzzy sys-
    tems: rule reduction and robust control,” in Proc. of 7th IEEE Conf. on Fuzzy
    Systems, 2000.
    [6] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, “Model construction, rule
    reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy
    systems,” IEEE Trans. Fuzzy Systems, vol. 9, no. 4, pp. 525–538, Aug. 2001.
    [7] J. Lo and M. Lin, “Robust H1 nonlinear control via fuzzy static output feedback,”
    IEEE Trans. Circuits and Syst. I: Fundamental Theory and Applications, vol. 50,
    no. 11, pp. 1494–1502, Nov. 2003.
    [8] ——, “Observer-based robust H1 control for fuzzy systems using two-step proce-
    dure,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 350–359, June 2004.
    [9] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear
    systems: stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1,
    pp. 14–23, Feb. 1996.
    [10] K. Tanaka, T. Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers: relaxed
    stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,
    no. 2, pp. 250–265, May 1998.
    [11] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of
    fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534,
    Oct. 2000.
    [12] Y. Blanco, W. Perruquetti, and P. Borne, “Relaxed stability conditions for Takagi-
    Sugeno’s fuzzy models,” in Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio,
    TX., 2000, pp. 539–543.
    [13] H. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear
    matrix inequality techniques in fuzzy control system design,” IEEE Trans. Fuzzy
    Systems, vol. 9, no. 2, pp. 324–332, Apr. 2001.
    [14] M. Johansson, A. Rantzer, and K.-E. Arzen, “Piecewise quadratic stability of
    fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 7, no. 6, pp. 713–722, Dec. 1999.
    [15] K. Kiriakidis, “Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear
    matrix inequalities,” IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269–277, Apr.
    2001.
    [16] M. Chadli, D. Maquin, and J. Ragot, “Relaxed stability conditions for Takagi-
    Sugeno fuzzy systems,” in Proc. 2000 IEEE International Conference on Systems,
    Man, and Cybernetics, vol. 5, 2000, pp. 3514–3519.
    [17] K. Tanaka, T. Hori, and H. Wang, “A fuzzy Lyapunov approach to fuzzy control
    system design,” in American Control Conference, vol. 6, Arlington, VA, 2001, pp.
    4790 –4795.
    [18] ——, “A dual design problem via multiple Lyapunov functions ,” in Proc. 10th
    IEEE Conf. Fuzzy Syst., vol. 1, Melbourne, Australia, 2001, pp. 388 –391.
    72
    [19] G. Feng and J. Ma, “Quadratic stabilization of uncertain discrete-time fuzzy dy-
    namic system,” IEEE Trans. Circuits and Syst. I: Fundamental Theory and Ap-
    plications, vol. 48, no. 11, pp. 1137–1344, Nov. 2001.
    [20] M. Teixeira, E. Assuncao, and R. Avellar, “On relaxed LMI-based design for fuzzy
    regulators and fuzzy observers,” IEEE Trans. Fuzzy Systems, vol. 11, no. 5, pp.
    613–623, 2003.
    [21] S. Cao, N. Rees, and G. Feng, “H1 control of nonlinear continuous-time systems
    based on dynamical fuzzy models,” Int’l. Journal on Systems Science, vol. 27,
    no. 9, pp. 821–830, 1996.
    [22] K. Tanaka, T. Hori, and H. Wang, “A multiple Lyapunov Function Approach
    to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Systems, vol. 11,
    no. 4, pp. 582–589, Aug. 2003.
    [23] Y. Morere, T. Guerra, L. Vermeiren, and A. Kamoun, “Non quadratic stability
    and stabilization of discrete fuzzy models,” in IEEE-ACIDCA Conference, 1999,
    reprint from authors.
    [24] T. Guerra and W. Perruquetti, “Non quadratic stabilization of discrete Takagi
    Sugeno fuzzy models,” in FUZZ-IEEE2001 Conference, vol. 1, Melbourne, AU,
    2001, pp. 1271–1274.
    [25] T. Guerra and L. Vermeiren, “Conditions for non quadratic stabilization of discrete
    fuzzy models,” in 2001 IFAC Conference, 2001.
    [26] B. Rhee and S. Won, “A new fuzzy Lyapunov function approach for a Takagi-
    sugeno fuzzy control system design,” Fuzzy Set and Systems, vol. 157, pp. 1211–
    1228, 2006.
    [27] G. Yang and J. Dong, “Quadratic stability analysis and synthesis of fuzzy control
    system,” Automatica, 2005.
    [28] H. Khalil, Nonlinear systems, 3th edition. Upper Saddle River, NJ.: Prentice-
    Hall, 2002.
    [29] J.-J. E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs, NJ.:
    Prentice-Hall, 1991.
    [30] Y. Jia, “Alternative proofs for improved LMI representations for the analysis and
    design of continuous-time systems with polytopic type uncertainty: a predictive
    approach,” IEEE Trans. Automatic Control, vol. 48, no. 8, pp. 1413–1416, Aug.
    2003.
    [31] G. Feng, “Piecewise H1 controller design of discrete time fuzzy systems.” IEEE
    Trans. Syst., Man, Cybern. B: Cybernetics, vol. 34, no. 1, pp. 682–686, Feb. 2004.
    [32] X. Liu and Q. Zhang, “Approach to quadratic stability conditions and H1 con-
    trol designs for T-S fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 11, no. 6,
    December 2003.
    [33] H. Gao, Z. Wang, and C. Wang, “Improved H1 control of discrete-time fuzzy
    systems: a cone complementarity linearization approach ”,” Int’l J. of Information
    Sciences, vol. 175, no. 1-2, pp. 57–77, 2005.
    [34] Y. Cao and P. Frank, “Robust H1 disturbance attenuation for a class of uncertain
    discrete-time fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406–
    415, Aug. 2000.

    QR CODE
    :::