| 研究生: |
陳正彥 Zheng-Yan Chen |
|---|---|
| 論文名稱: |
結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作 Fabrication of embedded metal-mesh electrode by laser direct write combing with electroless plating |
| 指導教授: | 何正榮 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 雷射直寫 、無電鍍 、金屬透明電極 、可撓性電極 、聚乙烯醇硝酸銀複合物薄膜 、雷射還原 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合雷射直寫與無電鍍技術應用於金屬透明電極之製作。因雷射光的高斯光束能量分布,強度由中間向周圍遞減,所造成溫度梯度與Marangoni effect現象,使雷射燒結的金屬線輪廓中間低兩旁高的形貌。本研究的第一部份在探討無電鍍方式是否能修補此一不均形貌。結果顯示無電鍍前後其表面形貌雖然相似,但橫截面的量測顯示兩邊與中間的高度差隨無電鍍的時間拉長而變小,所以無電鍍確可修補部分因高斯光束造成的高差問題。
第二部份使用實驗室自行合成之金屬離子複合物硝酸銀和聚乙烯醇薄膜,以雷射直寫技術形成圖案晶種,進行電鍍製作金屬網格。聚乙烯醇能螯合銀並且經由自身得失電子能將銀離子還原銀原子,過程中加熱可以增加其還原速度,且此金屬複合物有較好的成膜性。在附著力的部份,使用聚乙烯醇能增加與基板的附著力,使後續無電鍍銅也有良好的附著性。
第三部份將金屬網格應用於透明電極,金屬銅銀網格片電阻約1 Ω/ sq透光度大於80%,由於無電鍍後的金屬網格高度約在一微米左右,仍在製作於有機光電元件時,容易刺穿有機薄膜層。我們利用聚醯亞胺溶液將玻璃基板上的金屬網格嵌入至軟性基板中,製作成低表面粗糙度之可撓嵌入式金屬網格電極,並且進行往復撓曲測試,在彎曲半徑6 mm下,持續10000次彎曲,片電阻變化約增加20%。
In this study, both techniques of laser direct writing and electroless deposition are applied to the fabrication of flexible metal-mesh transparent electrodes. Due to the Gaussian distribution of the laser beam, the intensity of laser energy decreases gradually from the middle to the periphery, resulting in transversal temperature gradient and the Marangoni effect, which makes the crosswise profile of laser-sintered metal wire with uneven height profile, lower in the middle and higher at the two ends. Thus, the first part of this study explores whether electroless deposition can repair this uneven morphology. Results show that although the surface morphology before and after electroless deposition looks similar, the cross-sectional profile measurement shows that the height difference between the middle and the two ends becomes smaller. Hence, electroless deposition is a practical solution for repairing contour defects caused by Gaussian laser beam.
The second part of this study focuses on employing the electroless deposition technique to grow metal-mesh electrode from a glass substrate with an initial laser-direct-write seed pattern. The metal seeds are generated from a spin-coated composite thin film, synthesizing from silver nitrate (AgNO3) and polyvinyl alcohol (PVA) solutions, by laser direct write. PVA is capable of chelating silver ion and the silver ions are reduced to silver atoms via gaining and losing electrons as subjected to laser irradiation. In addition, the generated heat accelerates the reduction speed. The PVA/AgNO3 composite exhibits better film-formation property and the use of PVA increases the film’s linkage to substrate. Subsequently, that leads to good adhesion of the electrode to the glass substrate.
The resultant metal-mesh electrode, consisting of silver and copper, has sheet resistance about 1 Ω/sq and transmittance greater than 80%. But the height of the mesh line is about 1 micron which is too high to penetrate organic thin films in an organic device, where the film thicknesses are ranging from several tens to hundreds nanometers. Thus, in the third part of this study, we embed the electroless deposited electrode into a polyimide (PI) substrate as an embedded flexible electrode. Consequently, the surface roughness of the embedded electrode is less than 10 nanometers. The reciprocating bending test shows that, even under a small bending radius of 6 mm, there is only a 20% of increase in sheet resistance after 10000 cycles of bending.
[1] M.J. AlamU, D.C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol gel process,” Thin Solid Films, 455 459, 2000.
[2] B. O’Connor, C. Haughn, K-H. An, K. P. Pipe and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Applied Physics Letters, 93, 223304, 2008.
[3] E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mrs Bulletin, Volume 32, March 2007.
[4] S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura “Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8, 1399, 1990.
[5] J-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” American Chemical Society, 2008.
[6] J. Kim, Wilson Jose da Silva, Abd. Rashid bin Mohd Yusoff and J. Jang, “Organic devices based on nickel nanowires transparent electrode,” Scientific Reports, 2016.
[7] H-G. Im, S-H. Jung, J. Jin, D. Lee, J. Lee, I-D. Kim and B-S. Bae, “Flexible transparent conducting hybrid film using a surfaceembedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics,” American Chemical Society,2014.
[8] W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes,” Adv. Mater., DOI: 10.1002/adma.201600358, 2016.
[9] J. H M Maurer, L. Gonzalez-Garc ́ ía, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” American Chemical Society, 2016.
[10] P.M Ajayan and Z.Z. Otto, “Applications of carbon nanotubes,” Carbon nanotubes. Springer Berlin Heidelberg, 2001.
[11] P.S.M Vosguerichian and B. Zhenan, “A review of fabrication and applications of carbon nanotube film-based flexible electronics,” Nanoscale, 2013.
[12] Y-M. Chien, F. Lefevre, I. Shih and R. Izquierdo, “A solution processed top emission OLED with transparent carbon nanotube electrodes” Nanotechnology, 2010.
[13] M.J. Allen, V.C Tung and R.B. Kaner, “Honeycomb carbon: a review of graphene,” Chemical reviews, 2009.
[14] H. Cho, J-W. Shin, N.S. Cho, J. Moon, J-H. Han, Y-D. Kwon, S. Cho, and J-I. Lee, “Optical effects of graphene electrodes on organic light-emitting diodes,” Ieee Journal of selected topics in Quantum Electronics, Vol. 22, No. 1, January/February 2016.
[15] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” American Chemical Society, 2009.
[16] Y. Jang, Ji. Kim and D. Byun, “Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing,” Journal of Physics D: Applied Physics, 2013.
[17] M-G. Kang, H.J. Park, S.H. Ahn, L.J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Solar Energy Materials and Solar Cells, 2010.
[18] G. Kim, J-H. Shin, H-J. Choi, H. Lee, “Fabrication of transparent and flexible Ag three-dimensional mesh electrode by thermal roll-to-roll imprint lithography,” J Nanopart Res, 2014.
[19] Q. Zhang, X. Wan, F. Xing, L. Huang, G. Long, N. Yi, W. Ni, Z. Liu, J. Tian, and Y. Chen, “Solution-processable graphene mesh transparent electrodes for organic solar cells,” Nano Research, 2013.
[20] T. Gao, B. Wang, B. Ding, J-k. Lee, and P.W. Leu, “Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes,” American Chemical Society, 2014.
[21] H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” American Chemical Society, 2010.
[22] J. Xu, C. Liu, P-C. Hsu, K. Liu, R. Zhang, Y. Liu, and Y. Cui, “Roll-to-Roll transfer of electrospun nanofiber film for high-efficiency transparent air filter,” American Chemical Society, 2016.
[23] 裘性天 黃亭凱,特殊形貌銅與銀奈米材料製備之簡介, The Chinese Chemical Society, March, 2007.
[24] K-S. Chou, C-Y. Ren, “Synthesis of nanosized silver particles by chemical reduction method,” Materials Chemistry and Physics, 2000.
[25] D. He, B. Hu, Q-F. Yao, K. Wang, and S-H. Yu, “Large-scale synthesis of flexible freestanding sers substrates with high sensitivity: electrospun pva nanofibers embedded with controlled alignment of silver nanoparticles,” American Chemical Society, 2009.
[26] K-L. Liang, Y-C. Wang, W-L. Lin and J-J. Lin, “Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity,” The Royal Society of Chemistry, 2014.
[27] Y. Lee, J-r. Choi, K.J. Lee, N. E. Stott and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology, 2008.
[28] B. Lee, Y. Kim, S. Yang, I. Jeong, J. Moon, “A low-cure-temperature copper nano ink for highly conductive printed electrodes,” Current Applied Physics, 2009.
[29] Y-T. Cheng, R-H. Uang, K-C. Chiou, “Effect of PVP-coated silver nanoparticles using laser direct patterning process by photothermal effect,” Microelectronic Engineering, 2011.
[30] Y-L. Zhang, Q-D. Chena, H. Xiaa, H-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today, 2010.
[31] S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S.H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” American Chemical Society,2013.
[32] H. Min, B. Lee, S. Jeong, M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Optics & Laser Technology, 2017.
[33] H. Narcus, “Metal Finishing,” 1947.
[34] A. E. Carhill, “AES Pro,”1957.
[35] R. j. Zebliski, “U.S. Patent,” June 27, 1972.
[36] H. Oita, M. Matsuoka and C. Iwakura, “Deposition rate and morphology of electroless copper film from solutions conting 2 2’-dipyridyl,” Electrochimica Acta, 1997.
[37] D.T. Hsu, F.G. Shi, S. Lopatin, Y.S. Dimand, B. Zhao, M. Brongo and P.K. Vasudev, “Electroless copper deposition solution induced chemical changes in low-k fluorinated dielectrics,” Materials Science in Semiconductor Processing, 1999.
[38] Y.A. Yang, Y.B. Wei, B.H. Loo and J.N. Yao, “Electroless copper plating on a glass subatrate coated with ZnOfilm under UV illumination,” Journal of Electroanalytical Chemistry, No. 462, 1999.
[39] J. P. O’kelly, K. F. Mongey, Y. Gobil, J. Torres, P. V. Kelly, and G. M. Crean, “Room temperature electroless plating copper seed layer process for damascence interlevel metal structures,” Microelectronic Engineering, Vol. 50, 2000.
[40] H. Honma and T. Kobayashi, “Electroless copper deposition process using glyoxylic acid as a reducing agent,” J. Electrochem, 1994.
[41] J. Shu, B. P. A. Grandjean, and S. Kaliaguine, Ind.Eng, “Effects of Cu(OH)2 on electroless copper plating,” Ind. Eng. Chem. Res, Vol. 36, 1997.
[42] A. Hung, “Electroless copper deposition with hypophosphite as reducing agent,” Plating and Surface Finishing, Vol. 75, No. 1, 1988.
[43] 蔡明蒔, “半導體製程中銅電鍍技術之製程及設備,”電子月刊, 4月號, 1999.
[44] H. H. Hsu, J. W. Yeh, and S. J. Lin, “Repeated 3d nucleation in electroless cu deposition and the grain boundary structure involved,” J. Electrochem.Soc, 2003.
[45] C-Y. Kao and K-S. Chou, “Electroless copper plating onto printed lines of nanosized silver seeds,” Electrochemical and Solid-State Letters, 2007.
[46] Y-C. Liao and Z-K. Kao, “Direct writing patterns for electroless plated copper thin film on plastic substrates,” American Chemical Society, 2012.
[47] Y. Jin, D. Deng, F. Xiao, “Site-selective fabrication of patterned transparent copper mesh on flexible substrates at mild temperature for green, low cost electronics,” Electronic Components and Technology Conference, 2013.
[48] P-C. Hsu, D. Kong, S. Wang, H. Wang, A.J.W. Hui and Y. Cui, “Electrolessly deposited electrospun metal nanowire transparent electrodes,” American Chemical Society, 2014.
[49] S. Kiruthika, R. Gupta, A. Anand, A. Kumar and G. U. Kulkarn, “Fabrication of oxidation-resistant metal wire network-based transparent electrodes by a spray-roll coating process,” American Chemical Society, 2015.
[50] J. Huang, Z. Chen, F. Zhou, H. Wang, Y. Yuan, W. Chen, M. Gao, Y. Zhan, “High-adhesive electroless copper plating on polyethylene surface modified with primer,” J Solid State Electrochem,2017.
[51] H. Niino and A. Yabe, “Excimer laser polymer ablation: formation of positively charged surfaces and its application into the metallization of polymer films,” Applied Surface Science, 1993.
[52] D. Chena, Y. Lia, Q. Lua, J. Yina, Z. Zhua, “Selective silver seeding on laser modified polyimide for electroless copper plating”, Applied Surface Science, 2005.
[53] J. Xu, Y. Liaoa, H. Zengc, Z. Zhou, H. Sun, J. Song, X. Wang, Y. Cheng, Z. Xu, K. Sugiok, and Katsumi Midorikawa, “Selective deposition of conductive copper films on glass surfaces using femtosecond laser surface modification and electroless plating,” Lasers in Material Processing and Manufacturing, Vol. 6825, 68250L, 2007.
[54] Y. Liao, J. Xu, H. Sun, J. Song, X. Wang, Y. Cheng, “Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser,” Applied Surface Science, 2008.
[55] M. Lv, J. Liu, X. Zeng, Q. Du, J. Ai, “High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating,” Applied Surface Science, 2015.
[56] M. Hu, Q. Guo, T. Zhang, S. Zhou and J. Yang, “SU-8-induced strong bonding of polymer ligands to flexible substrates via in situ cross-linked reaction for improved surface metallization and fast fabrication of high-quality flexible circuits”, American Chemical Society,2016
[57] K. Kordas, S. Leppavuori, A. Uusimaki, Thomas F. George, L. Nanai, R. Vajtai, K. Bali, J. Bekesi, “Palladium thin film deposition on polyimide by CW Ar laser radiation for electroless copper plating,” Thin Solid Films, 2001.
[58] J.G. Liu, C.H. Chen, J.S. Zheng, J.Y. Huang, “CO2 laser direct writing of silver lines on epoxy resin from solid film,” Applied Surface Science, 2005.
[59] D. Chen, Q. Lu and Y. Zhao, “Laser-induced site-selective silver seeding on polyimide for electroless copper plating,” Applied Surface Science, 2006.
[60] N.S. Dellasa, P. K. Meinert, S. E. Mohney, “Laser-enhanced electroless plating of silver seed layers for selective electroless copper deposition,” Journal of Laser Applications Volume 20, Number 4 November 2008.
[61] K-L. Liang, Y-C. Wang, W-L. Lin and J-J. Lin, “Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity,” RSC Adv, 2014.
[62] R. Abargues, M.L. Martinez-Marco, P.J. Rodriguez-Canto, J. Marques-Hueso, J.P. Martinez-Pastor, “Metal-polymer nanocomposite resist: a step towards in-situ nanopatterns metallization,” Advances in Resist Materials and Processing Technology, 2013.
[63] J. Chung, et al. “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Applied Physics Letters, 2004.
[64] M. Aminuzzaman, W. Akira and M. Tokuji, “Laser direct writing of conductive silver micropatterns on transparent flexible double-decker-shaped polysilsesquioxane film using silver nanoparticle ink,” Journal of Electronic Materials, 2015.
[65] 魏楷, “雷射直寫技術應用於金屬網格軟性透明電極製作,” 2017.
[66] Alzoubi, Khalid, et al. “Bending fatigue study of sputtered ITO on flexible substrate,” Journal of Display Technology, 2011.