| 研究生: |
邱文志 Wen-Chih Chiu |
|---|---|
| 論文名稱: |
鑑定Schizosaccharomyces pombe的valyl-tRNA synthetase基因功能 Functional characterization of the valyl-tRNA synthetase genes of Schizosaccharomyces pombe |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 酵母菌 、tRNA合成酶 |
| 外文關鍵詞: | Valyl-tRNA synthetase, yeast |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前研究已知在Saccharomyces cerevisiae中一個VAS1基因(ScVAS1)可以藉由不同的轉錄以及轉譯起始點做出兩種valyl-tRNA synthetase (ValRS)的異構型蛋白質,這兩種異構型蛋白質分別具有粒線體以及細胞質功能。我們發現在C. albicans及Y. lipolytica中唯一的VAS1基因(CaVAS1及YlVAS1)也是由類似的機制做出兩種異構型的蛋白質,這顯示在酵母菌中這種由一個基因做出兩種異構形的ValRS是普遍存在的。此外也發現在酵母菌S. pombe的細胞核染色體中具有SpVAS1以及SpVAS2兩個不同的基因,其中SpValRS2多了一段細菌ValRS沒有的附加區段,且能夠互補ScVAS1剔除菌株之細胞質功能。雖然SpValRS1缺乏附加區段,但是其在胺基端多了一段粒線體標的訊號(mitochondrial targeting signal),功能試驗的結果顯示SpValRS1不能互補ScVAS1剔除菌株之粒線體功能。除此之外, SpVAS1及SpVAS2皆為S. pombe生長所必須之基因,因此在S. pombe中 SpValRS1很可能是粒線體的蛋白質,而SpValRS2是細胞質的蛋白質。基於這些發現我們推測SpVAS1及SpVAS2很可能是酵母菌ValRS演化的早期狀態,在演化的過程中一些酵母菌丟棄了其中一個ValRS基因,而另一個則衍生出雙重功能。
Previous studies showed that a single yeast gene, ScVAS1, specifies both the cytosolic and mitochondrial forms of valyl-tRNA synthetase (ValRS) through alternative transcription and translation. We show here that CaVAS1 and YlVAS1, the only ValRS genes in Candida albicans and Yarrowia lipolytica, respectively, follow a similar mechanism for expression of their enzyme isoforms. It appears that one gene encoding two enzyme isoforms is a universal mechanism in yeast. Interestingly, there are two homologous genes, SpVAS1 and SpVAS2, in the chromosomes of fission yeast Schizosaccharomyces pombe. Our data showed that SpValRS2 is a cytosolic protein that possesses an N-terminal appended domain and can complement a ScVAS1 knockout strain. Unexpectedly, while SpValRS1 carries a typical mitochondria targeting signal (MTS) and lacks an appended domain, it can not complement the mitochondrial function of a ScVAS1 knockout strain. In addition, we show that both SpVAS1 and SpVAS2 are essential genes in S. pombe. It is likely that SpValRS1 is a mitochondrial protein, while SpValRS2 is a cytosolic protein in S. pombe. It is therefore likely that SpVAS1 and SpVAS2 represent an early state of the evolutionary process of ValRS. During evolution, one of the genes is lost, while the other has evolved a bifunctional preperty.
Adams, K.L. and J.D. Palmer. 2003. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29: 380-395.
Adams, K.L., Y.L. Qiu, M. Stoutemyer, and J.D. Palmer. 2002. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA 99: 9905-9912.
Arnez, J.G. and D. Moras. 1997. Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci 22: 211-216.
Bahler, J., J.Q. Wu, M.S. Longtine, N.G. Shah, A. McKenzie, 3rd, A.B. Steever, A. Wach, P. Philippsen, and J.R. Pringle. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943-951.
Biou, V., A. Yaremchuk, M. Tukalo, and S. Cusack. 1994. The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263: 1404-1410.
Burbaum, J.J. and P. Schimmel. 1991. Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266: 16965-16968.
Chang, K.J. and C.C. Wang. 2004. Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279: 13778-13785.
Chatton, B., P. Walter, J.P. Ebel, F. Lacroute, and F. Fasiolo. 1988. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263: 52-57.
Chu, W.C. and J. Horowitz. 1991. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: a fluorine-19 NMR study. Biochemistry 30: 1655-1663.
Cusack, S. 1997. Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7: 881-889.
Dujon, B., D. Sherman, G. Fischer, P. Durrens, S. Casaregola, I. Lafontaine, J. De Montigny, C. Marck, C. Neuveglise, E. Talla et al. 2004. Genome evolution in yeasts. Nature 430: 35-44.
Eriani, G., M. Delarue, O. Poch, J. Gangloff, and D. Moras. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347: 203-206.
Farrow, M.A., B.E. Nordin, and P. Schimmel. 1999. Nucleotide determinants for tRNA-dependent amino acid discrimination by a class I tRNA synthetase. Biochemistry 38: 16898-16903.
Fukai, S., O. Nureki, S. Sekine, A. Shimada, J. Tao, D.G. Vassylyev, and S. Yokoyama. 2000. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103: 793-803.
Fukai, S., O. Nureki, S. Sekine, A. Shimada, D.G. Vassylyev, and S. Yokoyama. 2003. Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase. RNA 9: 100-111.
Gavel, Y. and G. von Heijne. 1990. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng 4: 33-37.
Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston et al. 1996. Life with 6000 genes. Science 274: 546, 563-547.
Heck, J.D. and G.W. Hatfield. 1988. Valyl-tRNA synthetase gene of Escherichia coli K12. Molecular genetic characterization. J Biol Chem 263: 857-867.
Helm, M., H. Brule, D. Friede, R. Giege, D. Putz, and C. Florentz. 2000. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 6: 1356-1379.
Hendrickson, T.L., T.K. Nomanbhoy, and P. Schimmel. 2000. Errors from selective disruption of the editing center in a tRNA synthetase. Biochemistry 39: 8180-8186.
Higgins, D.G., A.J. Bleasby, and R. Fuchs. 1992. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8: 189-191.
Horowitz, J., W.C. Chu, W.B. Derrick, J.C. Liu, M. Liu, and D. Yue. 1999. Synthetase recognition determinants of E. coli valine transfer RNA. Biochemistry 38: 7737-7746.
Hountondji, C., P. Dessen, and S. Blanquet. 1986. Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie 68: 1071-1078.
Huang, H.Y., Y. Kuei, H.Y. Chao, S.J. Chen, L.S. Yeh, and C.C. Wang. 2006. Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. J Biol Chem 281: 31430-31439.
Huang, H.Y., H.L. Tang, H.Y. Chao, L.S. Yeh, and C.C. Wang. 2006. An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol Microbiol 60: 189-198.
Ibba, M., A.W. Curnow, and D. Soll. 1997. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci 22: 39-42.
Jones, T., N.A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B.B. Magee, G. Newport, Y.R. Thorstenson, N. Agabian, P.T. Magee et al. 2004. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101: 7329-7334.
Jordana, X., B. Chatton, M. Paz-Weisshaar, J.M. Buhler, F. Cramer, J.P. Ebel, and F. Fasiolo. 1987. Structure of the yeast valyl-tRNA synthetase gene (VASI) and the homology of its translated amino acid sequence with Escherichia coli isoleucyl-tRNA synthetase. J Biol Chem 262: 7189-7194.
Lang, B.F., R. Cedergren, and M.W. Gray. 1987. The mitochondrial genome of the fission yeast, Schizosaccharomyces pombe. Sequence of the large-subunit ribosomal RNA gene, comparison of potential secondary structure in fungal mitochondrial large-subunit rRNAs and evolutionary considerations. Eur J Biochem 169: 527-537.
Lenhard, B., O. Orellana, M. Ibba, and I. Weygand-Durasevic. 1999. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res 27: 721-729.
Lorenz, M.C. and J. Heitman. 1998. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17: 1236-1247.
MacNeill, S.A. 2002. Genome sequencing: and then there were six. Curr Biol 12: R294-296.
Marchal, R., J.P. Vandecasteele, and M. Metche. 1977. Regulation of the central metabolism in relation to citric acid production in Saccharomycopsis lipolytica. Arch Microbiol 113: 99-104.
Marechal-Drouard, L., D. Ramamonjisoa, A. Cosset, J.H. Weil, and A. Dietrich. 1993. Editing corrects mispairing in the acceptor stem of bean and potato mitochondrial phenylalanine transfer RNAs. Nucleic Acids Res 21: 4909-4914.
Margulis, L. and D. Bermudes. 1985. Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis 1: 101-124.
Maundrell, K. 1990. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265: 10857-10864.
McClain, W.H., J. Schneider, S. Bhattacharya, and K. Gabriel. 1998. The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation. Proc Natl Acad Sci USA 95: 460-465.
Mirande, M. 1991. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40: 95-142.
Mitchison, J.M. 1957. The growth of single cells. I. Schizosaccharomyces pombe. Exp Cell Res 13: 244-262.
Moras, D. 1992. Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem Sci 17: 159-164.
Musial, C.E., F.R. Cockerill, 3rd, and G.D. Roberts. 1988. Fungal infections of the immunocompromised host: clinical and laboratory aspects. Clin Microbiol Rev 1: 349-364.
Nakai, K. and P. Horton. 1999. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24: 34-36.
Natsoulis, G., F. Hilger, and G.R. Fink. 1986. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Pallanck, L. and L.H. Schulman. 1991. Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc Natl Acad Sci USA 88: 3872-3876.
Palmer, J.D., K.L. Adams, Y. Cho, C.L. Parkinson, Y.L. Qiu, and K. Song. 2000. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97: 6960-6966.
RajBhandary, U.L. 1997. Once there were twenty. Proc Natl Acad Sci USA 94: 11761-11763.
Ribas de Pouplana, L. and P. Schimmel. 2001. Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104: 191-193.
Ribas de Pouplana, L., R.J. Turner, B.A. Steer, and P. Schimmel. 1998. Genetic code origins: tRNAs older than their synthetases? Proc Natl Acad Sci USA 95: 11295-11300.
Ripmaster, T.L., K. Shiba, and P. Schimmel. 1995. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc Natl Acad Sci USA 92: 4932-4936.
Schimmel, P. and C.C. Wang. 1999. Getting tRNA synthetases into the nucleus. Trends Biochem Sci 24: 127-128.
Schimmel, P.R. and D. Soll. 1979. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48: 601-648.
Senger, B., R. Aphasizhev, P. Walter, and F. Fasiolo. 1995. The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA. J Mol Biol 249: 45-58.
Sikorski, R.S. and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
Smith, C.L., T. Matsumoto, O. Niwa, S. Klco, J.B. Fan, M. Yanagida, and C.R. Cantor. 1987. An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field gel electrophoresis. Nucleic Acids Res 15: 4481-4489.
Sprinzl, M. and F. Cramer. 1975. Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2''- or 3''-hydroxyl group of the terminal adenosine. Proc Natl Acad Sci USA 72: 3049-3053.
Tamura, K., H. Himeno, H. Asahara, T. Hasegawa, and M. Shimizu. 1991. Identity determinants of E. coli tRNA(Val). Biochem Biophys Res Commun 177: 619-623.
Turner, R.J., M. Lovato, and P. Schimmel. 2000. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 275: 27681-27688.
Tzagoloff, A., A. Vambutas, and A. Akai. 1989. Characterization of MSM1, the structural gene for yeast mitochondrial methionyl-tRNA synthetase. Eur J Biochem 179: 365-371.
Wang, C.C., K.J. Chang, H.L. Tang, C.J. Hsieh, and P. Schimmel. 2003. Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42: 1646-1651.
Wang, C.C., A.J. Morales, and P. Schimmel. 2000. Functional redundancy in the nonspecific RNA binding domain of a class I tRNA synthetase. J Biol Chem 275: 17180-17186.
Wang, C.C. and P. Schimmel. 1999. Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274: 16508-16512.
Webster, T., H. Tsai, M. Kula, G.A. Mackie, and P. Schimmel. 1984. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science 226: 1315-1317.
Wood, V. R. Gwilliam M.A. Rajandream M. Lyne R. Lyne A. Stewart J. Sgouros N. Peat J. Hayles S. Baker et al. 2002. The genome sequence of Schizosaccharomyces pombe. Nature 415: 871-880.
Yang, D., Y. Oyaizu, H. Oyaizu, G.J. Olsen, and C.R. Woese. 1985. Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443-4447.
張嘉珮 2007 酵母菌使用罕見轉譯起始密碼的可能性探討。中央大學碩士論文