| 研究生: |
林聖棋 Sheng-Chi Lin |
|---|---|
| 論文名稱: |
脈衝雷射於組織治療之應用 Interaction of Pulsed Lasers andTissues in Tissue Treatments |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 光動力療法 、燒蝕 、組織 、雷射 、輻射 |
| 外文關鍵詞: | radiation, photodynamic therapy, ablation, tissue, laser |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用模擬真實情況的數值模型,研究脈衝雷射照射活
體組織的影響。文章初始比對現有文獻的實驗資料,驗證
本模型的精確度,所得結果發現在燒灼及熱凝結的預測深
度上,在低入射雷射能量,與實際實驗值相當吻合,而在
高入射雷射能量的分析上發現,在能量超過30 J/cm2時,
實驗和模擬間的誤差值會隨著能量的增大而變大。之後進
一步研究在組織燒蝕的臨床治療中脈衝時間,入射能量和
脈衝頻率等參數,發現入射能量和燒灼的深度成正比,而
脈衝頻率會因能量集中的效果,對燒灼深度會有影響,但
幅度變化並不大,在脈衝時間的研究指出,此參數的變化
並不會產生明顯的效果。
在分析低能量雷射對皮膚組織溫升的效應方面,模型中利
用將皮膚組織分層設定的方式,觀察出皮膚表面和真皮層
的溫差相當高,臨床治療需要有效的控制脈衝的時間。在
光動力治療方面,分析內部能量的分佈對治療效果的影響,發現在各項的參數中,提高腫瘤的吸收係數可有效的
增加療效,且當腫瘤的深度增加時,治療的的困難度會大
幅的提升。同時發現組織的等效衰減係數對腫瘤吸收能量
大小的影響最大,故在臨床上的改善應以此方面為主。由
上述的研究提供於臨床應用,具有增加效能並降低可能產
生之副作用的貢獻。
The physical processes of laser-tissue interactions are investigated theoretically. The radiative transfer equation (RTE) is used to
simulate the laser propagation in tissues. The model includes emission, absorption and
anisotropic scattering mechanisms. The RTE is
solved by using the discrete – ordinates method.
The energy equation is solved by the control volume based finite different method. The resulting numerical code, written in Fortran, is
validated by comparing the results with available
experimental measurements.
The effects of several important parameters on
the coagulation and ablation depths of tissue are
studied. Results show that the ablation depth
increases with the incidence fluence. The pulse
frequency of the laser has small influence on the
ablation depth. On the other hand, the ablation
depth is not affected by t he pulse duration.
Laser energy lasers are also used in thermal
treatment of skins. In this work, skins are
separated into four layers, namely, stratum
corneum, epidermis, dermis, and subcutaneous
tissue. The results show that, under laser
irradiation, the temperature difference between
the skin surface and the dermis layer is very
large. For better control of affected area,
appropriate pulse duration should be used.
For applications in photodynamic therapy (PDT), the energy distribution in tissue during the
treatment period is investigated. Increasing the
absorption coefficient of the tumor leads to
higher energy density in the tumor region, this
is beneficial fort PDT. The effective attenuation coefficient of the surrounding tissue has
profound in influence on the treatment results.
1. Tratonnikov*, A. A., Ermishova, N. V. and Loschenov, V. B., “Influence of red laser irradiation on hemoglobin oxygen saturation and blood
volume in human skin in vivo,” Proceeding of SPIE, V. 4257, Laser-Tissue
Interaction XII, p. 57-64 (2001).
2. http://mayohealth.org/mayo/9307/htm/angiopla.htm.
3. Jacques, S. L. “Laser-tissue interactions: photochemical, photo-
thermal and photomechanical,” Surg. Clin. North Am., V.72, p. 531-588 (1992).
4. Niemz, M. H., Laser-tissue Interactions: Fundamentals and
Applications, Springer, New York (1996).
5. Goldman, L., Wilson, R., Hornby, P., and Meyser R. “Laser radiation
of malignancy in man,” Cancer, V.18, p. 533-545 (1965).
6. Grundfest, W. S., Litvack, F., Forrester, J.S., Goldenberg, T.,
Swan, H. J., Morgenstern, L., Fishbein, M., Mcdermid, I.S., Rider, D. M.,
Pacala, T. J., and Lauden Slager, J. B. “Laser ablation of human
atherosclerotic plaque without adjacent tissue injury,” Journal of the
American College of Cardiology , V.5, P. 929-933 (1985).
7. Haase, K. K., Baumbach, A., Wehrmann, M., Duda, S., Cerullo, G.,
Ruckle, B., Steiger, E., and Karsch, K. R. “Potential use of holmium lasers
for angioplasty: evaluation of a new solid-state laser for ablation of
atherosclerotic plaque,” Lasers in Surgery and Medicine, V.11, p. 232-237
(1991).
8. Jasen, E. D., Le, T. H., Welch, A.J. “excimer, Ho:YAG and Q-switch
Ho:YAG ablation of aorta: acomparison of temperatures and tissue damage in
vitro,” Applied Optics, V.32, p. 526-534 (1993).
9. Walsh, J. T., “Er:YAG laser Ablation of Tissue: Measurement of
Ablation Rates” Lasers in Surgery and Medicine, V.9, p.327-337 (1991).
10. Walsh, J.T., Deutsch, T.F. “Pulsed CO2 laser tissue ablation:
measurement of the ablation rate,” Lasers in Surgery and Medicine, V. 8 p. 264
-275 (1988).
11. Wilson, B. C., Patterson, M. S., and Flock, S. T. “Indirect versus
direct techniques for the measurement of the optical properties of tissue,”
Photochemistry and Photobiology , V.46, p. 601-608 (1987).
12. Flock, S. T., Wilson, B. C., Patterson, M.S. “Total attenuation
coefficients and scattering phase functions of tissues and phantom materials
at 600 nm,” Medical Physics, V.14, p. 835-842 (1987).
13. Karagiannis, J. L., Zhang, Z., Grossweiner, B., and Grossweiner, L.I.
“Applications of the 1-D diffusion approximation to the optics of tissues and
tissue phantoms,” Applied Optics, V.28, p. 2311-2317 (1989).
14. Cheong, W.F., Prahl, S.A., and Welch, A. J. “A review of the optical
properties of biological tissue,” IEEE Journal of Quantum Electronics, V.26,
p. 2166-2185 (1990).
15. Leeuwen, T. G. van, Jasen, E. D., Welch, A. J., and Borst, C.,
“Excimer laser induced bubble: dimensions, theory and implications for laser
angioplasty,” Lasers in Surgery and Medicine, (1995).
16. Gerstmann, M. M., and Sagi, A., “Simulation of ablation and thermal
damage in CO2 laser-irradiated tissue,” Proceeding of SPIE, Laser-Tissue
Interaction, p. 214-227 (1990).
17. Jacques, S. L., “Finite-Difference modeling of laser ablation of
tissue”, Proceeding of SPIE, V.1882, Laser-tissue interaction IV, p422-431
(1993).
18. Pfefer, T. J., ”Pulsed Holmium:YAG Induced Thermal Damage in
Albumen,” Proceeding of SPIE, V.3254, Laser-Tissue Interaction Ⅸ, p. 192
-202, (1998).
19. Anderson, T. N., Jessen, N. C., and Arendt-Nielsen, L.,
“Determination of the temperature distribution in skin using a finite element
model,” Proceeding of SPIE, V.3914, Laser-Tissue Interaction ⅩI, p. 54-65
(2000).
20. Choi, B., Pearce J. A., Welch, A. J., “Modeling infrared temperature
measurements: Comparison of experimental results with simulations,”
Proceeding of SPIE, V.3914, Laser-Tissue Interaction XI, p. 48-53 (2000).
21. Patankar, S. V., “Numerical heat transfer and fluid flow”,
Hemisphere publishing corporation, New York (1979).
22. Asshauer, T., “Photothermal Denaturation of Egg White by Pulsed
Holmium Laser,” Proceeding of SPIE, V.2681, Laser-Tissue Interaction Ⅶ, p.
120-124, (1996).
23. Wolbarsht, M. L., “Laser Surgery: CO2 or HF,” IEEE Journal of
Quantum Electronics, V. QE-20, NO.12, p. 1427-1432 (1984).
24. Clauser, C., and Clayman, L., “Effects of Exposure Time and Pulse
Parameters onCO2 Laser Osteotomies,” Lasers in Surgery and Medicine, V.9 p.
22-29 (1989).
25. Chen, W. R., “Ablation of skin by Holmium: YAG laser,” Proceeding
of SPIE, V. 2134 Laser-Tissue InteractionⅤ, p. 342-351 (1994).
26. Venugopalan, V., “The Effect of CO2 Laser Pulse Repetition Rate on
Tissue Ablation Rate and Thermal Damage,” IEEE Transactions on Biomedical
Engineering, V. 38, NO. 10, p. 1049 -1052 (1991).
27. Welch, A. J. and Martin J. C., and Gemert, V., “Optical-thermal
Response of Laser Irradiated Tissue,” New York (1995).
28. Cho, Y. I., Bioengineering Heat Transfer, Advances in Heat transfer,
New York (1992).
29. Thynell, S. T., “Discrete method in radiative heat transfer,”
Internal Journal of Engineering science, V. 36, p. 1651-1675 (1998).
30. Clauser, C. and Clayman, L., “Effects of exposure time and pulse
parameters on CO2 laser osteotomies,” Lasers in Surgery and Medicine, V.9, p.
22-29 (1989).
31. Izatt, J. A., and Sankey, N. D., “Ablation of calcified Biological
tissue by pulsed hydrogen fluoride laser radiation,” IEEE Journal of Quantum
Electronics, V.26, n.12, p. 2261-2271 (1990)
32. 蔡桓宇,數值模擬多孔性介質燃燒爐中之熱增強現象;國立中央大學碩士論文 ;
中壢 ; 民國八十九年
33. yand, Y., and Welch, A. J., “rate process patameters of albumen,”
Lasers in surgery and Medicine, V.11, p.188-190, (1991).
34. Weaver, J. A., and Stoll, A. M., “mathematical modelof skin exposed
to htermal radiation,” Aerospace