| 研究生: |
廖崟馮 Yin-Ping Liao |
|---|---|
| 論文名稱: |
穿孔層板在對稱嵌段共聚物與均聚物混摻薄膜之動態演化與結構分析 |
| 指導教授: |
孫亞賢
Ya-Sen Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 混摻 、薄膜 、嵌段共聚物 、穿孔層 、自組裝 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用對稱型嵌段共聚物—聚苯乙烯-b-聚(甲基丙烯酸甲酯)混
摻與其分子量相當的聚苯乙烯均聚物(PS21k-b-PMMA21k/PS17k),在可形成穿
孔層結構之混摻比例下,以混摻溶液濃度與旋轉塗佈轉速控制薄膜初始厚
度,旋鍍薄膜沉積後將其在230 及270 ℃下進行1 小時及48 小時退火。並
透過光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、低掠角小角度X 光散
射儀(GISAXS)、X 光反射率(XRR)與中子反射(NR)對混摻薄膜進行
深入結構分析。
藉由臨場(in-situ)GISAXS 量測,在230 ℃退火1 小時內可觀察到緩
慢的動力學結構變化,且溫度降至室溫後仍未達平衡結構,而270 ℃退火
10 分鐘後結構不再變化而形成穩定結構。透過將GISAXS 影像中的截斷棒
進行定量分析結果,可以得知穿層間距約為37-40 nm,因此認為穿層間距
對於230 ℃與270 ℃的退火溫度並不敏感。若將GISAXS 進行q⊥方向的分
析可得出穿孔層結構主要以ABC 堆疊結構為主,透過angle-dependent
GISAXS 的分析可觀察到270 ℃退火的厚膜較230 ℃有序。XRR 與NR 則
可提供沿基材髮線方向的結構資訊。在薄膜中,XRR 曲線僅顯示高頻條紋
而無法看到與穿孔層相關的低頻條紋,這是由於在X 光下PS 與PMMA 之
間的SLD 對比度較低,而厚膜與此趨勢正好相反。對於PS-b-PMMA/dPS 的
混摻膜,NR 則顯示出兩種條紋,高頻條紋對應薄膜厚度,低頻條紋則與穿
孔層有關,低頻條紋的存在是由於dPS 與PS 相比具有高SLD 對比度。透
過XRR的定量分析與NR的模型擬合顯示出穿孔層的層間距約為27-32 nm。
We have demonstrated the phase behavior in blend films, which were prepared by blending a symmetric weakly-segregated, polystyrene-block-poly (methyl methacrylate), (PS-b-PMMA), block copolymer with a homopolystyrene of comparable molecular weight (hPS) at the volume ratio which can form perforated layer structure. Film thickness was controlled by the polymer concentrations and spin rates. After film deposition by spin coating, the films were annealed at 230 or 270 °C. The thin-film structures were investigated in depth by using optical microscopy (OM), scanning electron microscope (SEM), grazing-incidence small-angle X-ray scattering (GISAXS), grazing incidence X-ray reflectivity (XRR), and Neutron Reflectivity (NR).
It can be observed a slow kinetic structure changes within 1 hour of annealing at 230 °C by in-situ GISAXS measurement, and the equilibrium structure is not reached after the temperature drops to room temperature, while the structure no longer changes after annealing at 270 °C for 10 minutes. For GISAXS data, the quantitative analysis of truncation rods demonstrates that the inter-perforation distance was approximately 37~40 nm. The inter-perforation distance is insensitive to the annealing temperatures, 230 and 270 °C. The analysis of GISAXS in the q⊥ direction shows that the perforated layer structure is mainly an ABC stack structure. From the analysis of angle-dependent GISAXS, it can be observed that the thick film annealed at 270 °C is more ordered than that at 230 °C, while the thin film has a mixed structure of vertical and horizontal perforated layers. XRR and NR offer structural details along the normal direction of the substrate. For thin films, XRR curves only display high-frequency fringes, which correspond to film thickness. low-frequency fringes associated with inter-layer spacing are absent from the XRR curves. The absence of low-frequency fringes is due to low contrast in SLD between PS and PMMA under X-rays. For thick films, the trend is the opposite. The reason is that detecting the high-frequency fringes of thick films is beyond the instrument resolution. For PS-b-PMMA/dPS blend films, NR curves display two series of fringes. High-frequency fringes correspond to the film thickness and low-frequency fringes are associated with the perforated layers. The presence of the low-frequency fringes is because dPS has a high SLD contrast to the hydrogenated chains. Quantitative analysis of XRR spectra and model fitting of NR spectra demonstrate that the inter-layer spacing of perforated layers was approximately 27~32 nm.
[1] Leibler, L. Theory of Microphase Separation in Block Copolymers. Macromolecules 1980, 13, 1602-1617.
[2] Song, L.; Lam, Y. M. Morphology Evolution in a Diblock Copolymer Film. J Nanosci Nanotechnol 2006, 6, 3904-3909.
[3] Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block Copolymer Lithography. Macromolecules 2014, 47, 2-12.
[4] Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-Assembly of Block Copolymers Towards Mesoporous Materials for Energy Storage and Conversion Systems. Chem. Soc. Rev. 2020, 49, 4681-4736.
[5] Deng, Y.; Liu, C.; Gu, D.; Yu, T.; Tu, B.; Zhao, D. Thick Wall Mesoporous Carbons with a Large Pore Structure Templated from a Weakly Hydrophobic Peo–Pmma Diblock Copolymer. J. Mater. Chem. 2008, 18, 91-97.
[6] Orilall, M. C.; Wiesner, U. Block Copolymer Based Composition and Morphology Control in Nanostructured Hybrid Materials for Energy Conversion and Storage: Solar Cells, Batteries, and Fuel Cells. Chem. Soc. Rev. 2011, 40, 520-535.
[7] Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41, 525-557.
[8] Förster, S.; Plantenberg, T. From Self‐Organizing Polymers to Nanohybrid and Biomaterials. Angew. Chem. Int. Ed. 2002, 41, 688-714.
[9] Guo, Z.; Zhang, G.; Qiu, F.; Zhang, H.; Yang, Y.; Shi, A.-C. Discovering Ordered Phases of Block Copolymers: New Results from a Generic Fourier-Space Approach. Phys. Rev. Lett. 2008, 101, 028301.
[10] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969-5985.
[11] Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29, 1091-1098.
[12] Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules 1995, 28, 8796-8806.
[13] Maher, M. J.; Rettner, C. T.; Bates, C. M.; Blachut, G.; Carlson, M. C.; Durand, W. J.; Ellison, C. J.; Sanders, D. P.; Cheng, J. Y.; Willson, C. G. Directed Self-Assembly of Silicon-Containing Block Copolymer Thin Films. ACS Applied Materials & Interfaces 2015, 7, 3323-3328.
[14] Schulze, M. W.; McIntosh, L. D.; Hillmyer, M. A.; Lodge, T. P. High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes Via Polymerization-Induced Phase Separation. Nano Lett. 2014, 14, 122-126.
[15] Mecke, A.; Dittrich, C.; Meier, W. Biomimetic Membranes Designed from Amphiphilic Block Copolymers. Soft Matter 2006, 2, 751-759.
[16] Hu, H.; Gopinadhan, M.; Osuji, C. O. Directed Self-Assembly of Block Copolymers: A Tutorial Review of Strategies for Enabling Nanotechnology with Soft Matter. Soft Matter 2014, 10, 3867-3889.
[17] Horvat, A.; Lyakhova, K.; Sevink, G.; Zvelindovsky, A.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Mesoscale Modeling. The Journal of chemical physics 2004, 120, 1117-1126.
[18] Wang, Q.; Nealey, P. F.; de Pablo, J. J. Monte Carlo Simulations of Asymmetric Diblock Copolymer Thin Films Confined between Two Homogeneous Surfaces. Macromolecules 2001, 34, 3458-3470.
[19] Knoll, A.; Horvat, A.; Lyakhova, K.; Krausch, G.; Sevink, G.; Zvelindovsky, A.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Phys. Rev. Lett. 2002, 89, 035501.
[20] Maher, M. J.; Self, J. L.; Stasiak, P.; Blachut, G.; Ellison, C. J.; Matsen, M. W.; Bates, C. M.; Willson, C. G. Structure, Stability, and Reorganization of 0.5 L0 Topography in Block Copolymer Thin Films. ACS Nano 2016, 10, 10152-10160.
[21] Huang, E.; Mansky, P.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Mixed Lamellar Films: Evolution, Commensurability Effects, and Preferential Defect Formation. Macromolecules 2000, 33, 80-88.
[22] Kim, S.; Bates, C. M.; Thio, A.; Cushen, J. D.; Ellison, C. J.; Willson, C. G.; Bates, F. S. Consequences of Surface Neutralization in Diblock Copolymer Thin Films. ACS Nano 2013, 7, 9905-9919.
[23] Park, S.; Kim, Y.; Lee, W.; Hur, S.-M.; Ryu, D. Y. Gyroid Structures in Solvent Annealed Ps-B-Pmma Films: Controlled Orientation by Substrate Interactions. Macromolecules 2017, 50, 5033-5041.
[24] Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Phys. Rev. Lett. 2002, 89, 035501.
[25] Stein, G. E.; Cochran, E. W.; Katsov, K.; Fredrickson, G. H.; Kramer, E. J.; Li, X.; Wang, J. Symmetry Breaking of in-Plane Order in Confined Copolymer Mesophases. Phys. Rev. Lett. 2007, 98, 158302.
[26] Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers .2. Effects of Molecular-Weights of Homopolymers. Macromolecules 1990, 23, 4378-4386.
[27] Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers .1. Solubilization of Low-Molecular-Weight Homopolymers. Macromolecules 1991, 24, 240-251.
[28] Hasegawa, H.; Hashimoto, T., Self-Assembly and Morphology of Block Copolymer Systems. In Comprehensive Polymer Science and Supplements, Pergamon, 1989. pp 497-539.
[29] Koizumi, S.; Hasegawa, H.; Hashimoto, T. Ordered Structure of Block Polymer/Homopolymer Mixtures, 4. Vesicle Formation and Macrophase Separation. in Makromolekulare Chemie. Macromolecular Symposia. 1992. Wiley Online Library.
[30] Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Epitaxial Phase Transition of Polystyrene-B-Polyisoprene from Hexagonally Perforated Layer to Gyroid Phase in Thin Film. Macromolecules 2005, 38, 10532-10536.
[31] Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K.-W.; Chang, T.; Ree, M. Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-Ray Scattering. Macromolecules 2005, 38, 4311-4323.
[32] Förster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers near the Order-Disorder Transition. Macromolecules 1994, 27, 6922-6935.
[33] Hong, J.-W.; Chang, J.-H.; Hung, H.-H.; Liao, Y.-P.; Jian, Y.-Q.; Chang, I. C.-Y.; Huang, T.-Y.; Nelson, A.; Lin, I. M.; Chiang, Y.-W.; Sun, Y.-S. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene-Block-Poly(Methyl Methacrylate). Macromolecules 2022, 55, 2130-2147.
[34] Mayes, A.; Russell, T.; Satija, S.; Majkrzak, C. Homopolymer Distributions in Ordered Block Copolymers. Macromolecules 1992, 25, 6523-6531.
[35] Di Gianfrancesco, A., Technologies for Chemical Analyses, Microstructural and Inspection Investigations. In Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017. pp 197-245.
[36] Inkson, B. J., Scanning Electron Microscopy (Sem) and Transmission Electron Microscopy (Tem) for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (Nde) Methods, Woodhead Publishing, 2016. pp 17-43.
[37] Kannan, M., Scanning Electron Microscopy: Principle, Components and Applications. In A Textbook on Fundamentals and Applications of Nanotechnology, DAYA Publishing House, 2018. pp 81-92.
[38] 孫亞賢; 劉峻佑; 簡士偉,低掠角小角度x光散射原理及在高分子薄膜結構之應用,科儀新知,34 (4), p. 61-70,2013。
[39] Yoneda, Y. Anomalous Surface Reflection of X Rays. Phys. Rev. 1963, 131, 2010-2013.
[40] 鄭有舜,X-光小角度散射在軟物質研究上的應用,物理雙月刊,26 (2), p. 416-424,2004。
[41] Ahn, J.-H.; Zin, W.-C. Structure of Shear-Induced Perforated Layer Phase in Styrene−Isoprene Diblock Copolymer Melts. Macromolecules 2000, 33, 641-644.
[42] Heo, K.; Yoon, J.; Jin, S.; Kim, J.; Kim, K.-W.; Shin, T. J.; Chung, B.; Chang, T.; Ree, M. Polystyrene-B-Polyisoprene Thin Films with Hexagonally Perforated Layer Structure: Quantitative Grazing-Incidence X-Ray Scattering Analysis. J. Appl. Crystallogr. 2008, 41, 281-291.
[43] 蔡增光; 林文智; 卓恩宗,X光反射率在奈米半導體製程的新應用,科儀新知,24 (3), p. p. 52-57,2002。
[44] 儀器總覽. 1998: 行政院國家科學委員會精密儀器發展中心.
[45] Narayanan, S.; Lee, D. R.; Guico, R. S.; Sinha, S. K.; Wang, J. Real-Time Evolution of the Distribution of Nanoparticles in an Ultrathin-Polymer-Film-Based Waveguide. Phys. Rev. Lett. 2005, 94, 145504.
[46] Sun, Y.-S.; Chien, S.-W.; Liou, J.-Y.; Su, C. H.; Liao, K.-F. Film Instability Induced Evolution of Hierarchical Structures in Annealed Ultrathin Films of an Asymmetric Block Copolymer on Polar Substrates. Polymer 2011, 52, 1180-1190.
[47] Lu, X.; Yager, K. G.; Johnston, D.; Black, C. T.; Ocko, B. M. Grazing-Incidence Transmission X-Ray Scattering: Surface Scattering in the Born Approximation. J. Appl. Crystallogr. 2013, 46, 165-172.
[48] Liu, J.; Yager, K. G. Unwarping Gisaxs Data. IUCrJ 2018, 5, 737-752.
[49] Busch, P.; Rauscher, M.; Moulin, J.-F.; Mueller-Buschbaum, P. Debye–Scherrer Rings from Block Copolymer Films with Powder-Like Order. J. Appl. Crystallogr. 2011, 44, 370-379.
[50] Kimishima, K.; Hashimoto, T.; Han, C. D. Spatial Distribution of Added Homopolymer within the Microdomains of a Mixture Consisting of an ABA-Type Triblock Copolymer and a Homopolymer. Macromolecules 1995, 28, 3842-3853.
[51] Lee, B.; Park, I.; Park, H.; Lo, C.-T.; Chang, Taihyun,; Winans, R. E. Electron Density Map Using Multiple Scattering in Grazing-Incidence Small-Angle X-Ray Scattering. J. Appl. Crystallogr. 2007, 40, 496-504.
[52] Hong, J.-W.; Jian, Y.-Q.; Liao, Y.-P.; Hung, H.-H.; Huang, T.-Y.; Nelson, A.; Tsao, I. Y.; Wu, C.-M.; Sun, Y.-S. Distributions of Deuterated Polystyrene Chains in Perforated Layers of Blend Films of a Symmetric Polystyrene-Block-Poly(Methyl Methacrylate). Langmuir 2021, 37, 13046-13058.
[53] Feng, G.; Wu, L.; Letey, J. Evaluating Aeration Criteria by Simultaneous Measurement of Oxygen Diffusion Rate and Soil-Water Regime. Soil Science 2002, 167, 495-503.
[54] Hariharan, A.; Kumar, S. K.; Russell, T. P. Free Surfaces of Polymer Blends. Ii. Effects of Molecular Weight and Applications to Asymmetric Polymer Blends. The Journal of chemical physics 1993, 99, 4041-4050.
[55] Hariharan, A.; Kumar, S. K.; Rafailovich, M. H.; Sokolov, J.; Zheng, X.; Duong, D.; Schwarz, S. A.; Russell, T. P. The Effect of Finite Film Thickness on the Surface Segregation in Symmetric Binary Polymer Mixtures. The Journal of chemical physics 1993, 99, 656-663.