跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁瀅龍
Ying-Lung Liang
論文名稱: 多晶矽和金屬閘極於二維金氧半場效電晶體模擬比較
Comparison Between Polysilicon and Metal Gate in 2D MOSFET Simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 56
中文關鍵詞: 矩形網格元件模擬金氧半場效電晶體
外文關鍵詞: rectangular mesh, device simulation, MOSFET
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們將帕松方程式及電流連續方程式,利用等效電路的方式來設計出二維網格數值元件模擬器,元件的模擬就變成了電路的模擬,不但可以用電路模擬器來做元件模擬,而且可以和一般電路結合,形成混階模擬,接著討論多晶矽閘極和金屬閘極的差異和優缺點,並利用多晶矽閘極模擬的結果和金屬閘極來做比較,最後,我們將討論的主題是用非白努力的電流表示方法,並比較非白努力方程式與傳統白努力方程式上的差異。


    In this thesis, we use Poisson’s equation and continuity equations to design an equivalent circuit model for 2-D device simulation. The device simulation will be transformed into the circuit simulation. The simulation will become a mixed-level device and circuit simulation. We discuss the advantages and disadvantages between poly-Si gate and metal gate. And the simulation results of poly-Si gate will be compared with those of metal gate. Finally, the subject to be discussed is the non-Bernoulli equation for current expression. We will compare the Bernoulli method with non-Bernoulli method.

    摘要 I Abstract II 目錄 III 圖目錄 IV 表目錄 VI 第一章 簡介 1 第二章 二維元件模擬架構 2 2-1 半導體物理特性及二維矩形網格等效電路 2 2-2 牛頓拉夫森於模擬器數值運算 6 第三章 多晶矽閘極於MOSFET模擬及特性分析 9 3-1 多晶矽閘極模型 9 3-2 臨界電壓下反轉層厚度的模擬及探討 11 3-3 表面電荷密度隨表面電位變化之模擬與探討 19 3-4 汲極電壓對通道內各點的單位反轉層電荷影響探討 24 第四章 多晶矽和金屬閘極之模型及模擬比較與探討 28 4-1 多晶矽和金屬閘極於元件電路混階模型與模擬 28 4-2 多晶矽和金屬閘極於MOSFET模擬比較 33 4-3 白努力和非白努力方程式對於元件上模擬影響 36 第五章 結論 44 參考文獻 45

    [1] M. A. Mahmud and S. Subrina, “A Two Dimensional Analytical Model of Drain to Source Current and Subthreshold Slope of a Triple Material Double Gate MOSFET,” IEEE ICECE Proc., Dec. 2014.
    [2] G. M. Zhang, Y. K. Su, H. Y. Hsin, and Y. T. Tsai, “Double gate junctionless MOSFET simulation and comparison with analytical model,” IEEE RSM Proc., Sep. 2013.
    [3] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson solution of Poisson's equation in a pn diode,” International Journal of Electrical Engineering Education, Vol. 44 Issue 1, p23, Jan. 2007.
    [4] M. J. Zeng, ”Development of Triangular element and its applications to arbitrary 2D Semiconductor device,” M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C, 2014.
    [5] H. Craig Casey, Jr., Devices for integrated circuits : silicon and III-V compound semiconductor, John Wiley, Chapter 7, 1999.
    [6] D. A. Neamen, Semiconductor physics and devices: Basic Principles, 4th ed., McGraw-Hill, Chapter 10, 2012.
    [7] S. M. Sze and Kwok K Ng, Physics of semiconductor devices, 3rd ed., Wiley-Interscience, Chapter 6, 2007.
    [8] C. C. Chang, S. J. Li, and Y. T. Tsai, “Two-dimensional Mixed-level Device and Circuit Simulation using a simple Band Matrix Solver,” in EDMS 2005, Kaohsiung, Taiwan, 2005.
    [9] S. J. Li, “Semiconductor Device Simulation with Equivalent Circuit Model including Quantum Effect,” Ph.D. dissertation, Institute of EE, National Central University, Taiwan, R.O.C, 2007.
    [10] C. W. Tsai, ”Surface Recombination Current and non-Bernoulli Equation for 2-D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C, 2009.

    QR CODE
    :::