跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡志維
Tsai-Chih Wei
論文名稱: 表面復合電流及非白努力方程式對於二維半導體數值分析之影響
Surface Recombination Current and non-Bernoulli Equation for 2-D Semiconductor Device Simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 44
中文關鍵詞: 非白努力方程式表面復合效應白努力
外文關鍵詞: Bernoulli function, surface recombination
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們使用Poisson’s equation以及continuity equations設計出包含表面復合模型的二維混階元件模擬器。藉由這模擬器,可探討元件內部載子復合的情形,以及相伴隨的載子運動效應,接著我們將此種方法建立到一般的元件上,來探討表面復合效應對於元件的影響,並且為了證明電流的影響如同我們所假設,我們也另外建立一個電流極座標表示法,最後我們將討論的一個主題是以non-Bernoulli的電流表示方法,即回歸最原始的漂移電流以及擴散電流,並比較Bernoulli與non-Bernoulli的優缺點。


    In this paper, we use Poisson’s equation and continuity equations to design the surface recombination model for 2-D device simulator. Because this simulator is designed to include the surface carrier recombination, we develop this surface recombination model for p-n diode and BJT device. For proving the influence of surface recombination current, we also build a vector plot to describe the current flow. Finally the other subject to be discussed is the non-Bernoulli equation for current expression. The non-Bernoulli equation returns to the most primitive expression for drift current and diffusion current. We will compare the Bernoulli method and non-Bernoulli method.

    目 錄 論 文 目 錄 III 圖表目錄 IV 1. 簡介 1 2. 含表面復合模型的二維元件模擬 3 2.1 二維的等效電路模型 3 2.2 含表面復合的二維等效電路模型 6 2.3 載子活期表面復合模型 11 2.4 電流極座標表示法 14 3. 表面復合對元件的影嚮 18 3.1 二極體表面復合效應的建立 18 3.2 順向偏壓與逆向偏壓對表面復率的影響 19 3.3 表面復合效應對二極體電流的影響 21 3.4 以極座標表示法探討表面復合電流 25 3.5 電晶體表面復合效應的建立 28 3.6 表面復合對電晶體電流的影響 31 4. Bernoulli function與non-Bernoulli function的電流模擬方法與比較 34 4.1 白努力電流模擬方法及其優缺點 34 4.2 非白努力電流模擬方法及其優缺點 36 4.3 二種方法於二極體元件上的比較 38 4.4 二種方法於電晶體元件上的比較 41 5. 結 論 43 參考文獻 44

    參考文獻
    [1] J. Y. Peng, ”Current Characteristic and Electric-field Analysis in 2-D SOI Semiconductor Device Simulation,” M. S. Thesis, Institute of EE National Central University Chung-Li, Taiwan, Republic of China June 2008
    [2] A. Schenka, “Coupled defect-level recombination:Theory and application to anomalous diode characteristics,” J. Appl. Phys. 78 (5), 1 September 1995
    [3] A. Cuevas, ”Surface recombination velocity of highly doped n-type silicon,” J. Appl. Phys. 80 (6), 15 September 1996
    [4] D. A. Neamen, “Semiconductor Physics and Devices”,Chapter 6 New York: McGraw-Hill Companies, 2003.
    [5] Ming-Ta Chao, ”Current-flow and Electric-field Analysis in 2-D Semiconductor Device Simulation,” National Central University, Chung-Li, Taiwan, June 2003
    [6] W. Shockley and W. T. Read, Jr., "Statistics of recombination of holes and electrons," Phys. Rev., vol. 87, pp. 835-842; Septemnber,1952.
    [7] C. T. Sah, ”Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics,” Proceeding Of The IRE, vol. 45, pp. 1228-1243. Sept. 1957.
    [8] S. Selberherr, “Analysis and Simulation of Semiconductor Devices,” New York: Springer-Verlag Wien, 1984.
    [9] C. H. Ho, C. C. Chang, S. J. Li and Y. T. Tsai, “The Branch-Cut Method and Its Applications in Two-Dimensional Device Simulation,” ACTA International Journal of Modelling and Simulation”, 2009.
    [10] Gerold W. Neudeck., ” The bipolar junction transistor,” Addison-Wesley, 1989
    [11] S J. Li, “Semiconductor Device Simulation with Equivalent Circuit Model including Quantum Effect,” Ph.D. dissertation, National Central University Chung-Li, Taiwan, R.O.C, 2007

    QR CODE
    :::