| 研究生: |
朱偉均 CHU,WEI-CHUN |
|---|---|
| 論文名稱: |
基於工程設計流程的生活科技課程對國中生在 工程態度、生活科技學習興趣、科技及工程認 知與實作表現的影響 The impact of technology courses based on engineering design process on junior high school students’ attitudes to engineering, interest in technology learning, technology and engineering cognition and practical performance |
| 指導教授: |
吳穎沺
Wu,Ying-Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 工程設計流程 、工程態度 、生活科技學習興趣 、科技認知 、工程認知 、實作表現 |
| 外文關鍵詞: | engineering design process, engineering attitude, interest in technology learning, technology cognition, engineering cognition, practical performance |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的著重在探討分別融入「工程設計流程」與「問題解決流程」的生活科技課程,以了解學生接受兩種不同流程的設計課程後,對工程態度、生活科技學習興趣、科技及工程認知與實作表現。
為了此研究目的,本研究主要採用準實驗研究法,並針對桃園市某國中八年級學生為對象,其中實驗組與控制組皆為三十二人。本研究分別對兩組學生實施五週的「抬升裝置設計課程」,實驗組採取「工程設計流程」,控制組採取「問題解決流程」,在研究前後分別對實驗組學生及控制組學生實施「工程態度」、「生活科技學習興趣」、「科技及工程認知」前測,並於研究後再進行「工程態度」、「生活科技學習興趣」、「科技及工程認知」與「實作表現」後測。
研究結果發現相較傳統以「問題解決流程」的生活科技課程,國中八年級學生經過「工程設計流程」,在「工程態度」及「生活科技學習興趣」上,實驗組與控制組無顯著成效,但在「課程設計」能實際顯著的增加對於「生活科技學習興趣」。在「科技及工程認知」評量中,實驗組與控制組前後測皆有顯著差異,但兩組間的在研究過後並無顯著差異。實作表現實驗組明顯優於控制組。
基於上述研究結果,本研究建議可將「工程設計流程」加入於國中的生活科技課程當中,可以讓國中生對於工程的認知更加清晰,同時將「工程設計流程」的概念融入國中的生活科技科的設計課程中,能確實增進學生的實作表現。
The main purpose of this research is to explore the technology courses that integrate the "engineering design process" and "problem-solving process" respectively. In order to understand the students’ attitudes to engineering, interest in technology learning, Technology and Engineering cognition, and practical performance after receiving two different process design courses.
For this research, this research mainly uses the quasi-experimental research method and is aimed at the eighth-grade students of a middle school in Taoyuan City, in which the experimental group and the control group are both 32 people. This study implemented a five-week "lifting device design course" for two groups of students. The experimental group used the "engineering design process", the control group used the "problem-solving process", and the experimental group and the control group were respectively implemented before and after the research. " Attitudes to engineering ", " Interest in technology learning ", "Technology and Engineering Awareness" pre-test, and " Attitudes to engineering ", " Interest in technology learning ", " Technology and Engineering Cognition " and "Practical Performance" after the research Post-test.
The results of the study showed that compared with the traditional technology curriculum based on the "problem-solving process", the eighth-grade students of junior high school went through the "engineering design process". In addition, the experimental group and the control group had no significant results in the " Attitudes to engineering " and " Interest in technology learning ". But "Curriculum Design "can significantly increase the interest in " Interest in technology learning ". In the "Technology and Engineering Cognition" assessment, there are significant differences between the experimental group and the control group before and after the test, but there is no significant difference between the two groups after the study. The performance of the experimental group was significantly better than the control group.
This research suggests that the "engineering design process" can be added to the technology curriculum of junior high schools, which can make junior high school students have a clearer understanding of engineering. At the same time, the concept of "engineering design process" can be integrated into the design courses of Living Technology of junior high schools. It improves the performance of students.
Accreditation Board for Engineering and Techology(ABET)(2020). Criteria for Accrediting Engineering Programs, 2020-2021,Retrieved from https://www.abet.org/wp-content/uploads/2020/09/EAC-Criteria-2020-2021.pdf
Atman, C. J., Cardella, M. E., Turns, J., & Adams, R. (2005). Comparing freshman and senior engineering design processes: An in-depth follow-up study.Design Studies, 26, 325–357.
Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering Design Processes: A Comparison of Students and Expert Practitioners. Journal of Engineering Education, 96(4), 359-379.
Brophy, S., Klein, S., Portmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369-387.
Deal, W. F. I. (1994). Spotlight on careers. The Technology Teacher, 54(2), 13-24.
Dewey, J. (1910). How we think. Boston: D.C. Heath & Co.
Dewey, J. (1944). Democracy and education. New York: The Free Press.
Dieter, G.E., 2000. Engineering design: a materials and processing approach.Boston, MA: McGraw-Hill Inc.
Dijk, L., Vergeest, J.S.M., and Horvath, I., 1998. Testing shape manipulation tools using abstract prototypes. Design Studies, 19 (2), 187–201.
Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103–120.
Eekels, J. (1995). Values, objectivity and subjectivity in science and engineering. Journal of Engineering Design, 6(3), 173.
English, L. D. (2008). Mathematical modelling: Linking mathematics, science, and the arts in the primary curriculum. Proceedings of the Second International Symposium on Mathematics and its Connections to the Arts and Sciences (MACAS2), Odense, Denmark.
English L.D. (2010) Modeling with Complex Data in the Primary School. In: Lesh R., Galbraith P., Haines C., Hurford A. (eds) Modeling Students' Mathematical Modeling Competencies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0561-1_25
Hannah, R., Joshi, S., & Summers, J. D. (2012). A user study of interpretability of engineering design representation. Journal of Engineering Design, 23(6), 443–468.
Harris, T. A., & Jacobs, H. R. (1995). On effective methods to teach mechanical design. Journal of Engineering Education, 84(3), 343-349.
Hayes, J. R. (1989). The complete problem solver (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Houde, S. and C. Hill (1997). What do prototypes prototype? Handbook of human-computer interaction, Elsevier: 367-381.
Hynes, M. M. (2012). Middle-school teachers’ understanding and teaching of the engineering design process: A look at subject matter and pedagogical content knowledge. International Journal of Technology and Design Education, 22, 345–360.
International Technology Education Association. (2000). Standards for technological literacy:Content for the study of technology. Reston, VA: Author.
International Technology Education Association. (2007). Standards for technological literacy: Content for the study of technology (Vol. 82). Reston, VA: International Technology Association.
International Technology and Education Association. (2021). What is Engineering Design.Retrieved from https://www.linkengineering.org/EngineeringDesign.aspx
Jamian, A. R., & Baharom, R. (2012). The application of teaching aids and school supportive factors in learning reading skill among the remedial students in under enrolment schools. Procedia - Social and Behavioral Sciences, 35, 187-194.
Jin, Y. & Chusilp, P. (2006). Study of mental iteration in different design situations. Design Studies, 27(1), 25-55.
Lachapelle, C. P. and C. M. Cunningham (2007). Engineering is elementary: Children’s changing understandings of science and engineering. ASEE Annual Conference & Exposition.
Lachapelle, C. P. and C. M. Cunningham (2017). Elementary engineering student interests and attitudes: A comparison across treatments. 2017 ASEE Annual Conference & Exposition.
Lewis, T. (2005). Coming to terms with engineering design as content. Journal of Technology Education, 16(2), 37-54.
Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. K. R. Lesh (Ed.), Handbook of research design in mathematics and science education ,591-646. Mahwah, NJ: Lawrence Erlbaum.
Lin, KY., Wu, YT., Hsu, YT., & P. John Williams.(2021). Effects of infusing the engineering design process into STEM project-based learning to develop preservice technology teachers’ engineering design thinking. International Journal of STEM Education 8(1): 1-15.
McKoy,F., Hern'andez,N.V., Summers,J.D., Shah,J.J.(2001). Influence of design representation on effectiveness of idea generation. In Proceedings of ASME 2001 international design engineering technical conference and computers and information in engineering conference, 9–12 September 2001, Pittsburgh, PA. Paper no DTM-DETC 2001–21685. 1–10.
Mentzer, N., Huffman, T. & Thayer, H. High school student modeling in the engineering design process. Int J Technol Des Educ 24, 293–316 (2014). https://doi.org/10.1007/s10798-013-9260-x
Merrill, C., Custer, R., Daugherty, J., Westrick, M., & Zeng, Y. (2008). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20(1), 48-64.
Mioduser, D. (1998). Framework for the study of cognitive and curricular issues oftechnological problem solving. International Journal of Technology and DesignEducation, 8(2), 167–184.
National Research Council. 1985. Engineering Education and Practice in the United States: Foundations of Our Techno-Economic Future. Washington, DC: The National Academies Press. https://doi.org/10.17226/582.
National Academy of Engineering. (2005). Engineering in K-12 Education: Understanding the Status and Improving the Prospects. Washington, D.C.: The National Academies Press.
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B.Smith (Ed.), Liberal education in a knowledge society (pp.67-98). Chicago: Open Court.
Scardamalia, M., &Bereiter, C. (2003). Knowledge building. In James, W. G.(Ed.),The Encyclopedia of Education (2nd ed., pp. 1370-1373). New York: Macmillan Reference, USA.
Yu, Kuang-Chao,. Fan, Szu-Chun,. & Lin, Kuen-Yi. (2014). Enhancing students’ problem-solving skills through context-based learning. International Journal of Science and Mathematics Education. 13. 10.1007/s10763-014-9567-4.
University of Colorado Boulder. (2021). Engineering Design Process.Retrieved from https://www.teachengineering.org/design/designprocess
方崇雄(1999)。國民中學問題解決導向生活科技課程學習歷程模式之建構與驗證研究。台北:中華民國工業科技教育學會。
余鑑(2003)。工藝教育思想的流變。生活科技教育月刊,38(8),3-11。
馬汀•塞利格曼(2008)。一生受用的快樂技巧-幫助孩子建造心中穩固堅定的樂觀金字塔。《The Optimistic Child》,洪莉翻譯。遠流出版。
翁崇基和鍾世凱(2009)。電腦繪圖中3D建模技術之可塑型分類-以造型藝術中立體造型形式為例。藝術論文集刊,12,29-59。
朱珮禎和曾淑惠(2018,7 月)。創客(Maker)教育實踐於十二年國教課程之評析。台灣教育評論月刊,7(3),160-164。
葉忠福(2018,8 月27 日)。從創客運動看創客經濟的發展與未來。取自
http://my058.so-buy.com/m/405-1649-55169,c13694.php 。
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校科技領域。2021/6/1 取自https://www.naer.edu.tw/upload/1/16/doc/816/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%B0%91%E5%9F%BA%E6%9C%AC%E6%95%99%E8%82%B2%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E5%9C%8B%E6%B0%91%E4%B8%AD%E5%AD%B8%E6%9A%A8%E6%99%AE%E9%80%9A%E5%9E%8B%E9%AB%98%E7%B4%9A%E4%B8%AD%E7%AD%89%E5%AD%B8%E6%A0%A1-%E7%A7%91%E6%8A%80%E9%A0%98%E5%9F%9F.pdf。
教育部(2018)。十二年國民基本教育課程綱要總綱。2021/6/1 取自https://www.naer.edu.tw/upload/1/16/doc/288/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%95%99%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E7%B8%BD%E7%B6%B1.pdf。
林坤誼(2014)。STEM 科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),1。
趙衍宇(2015)。自造者運動對生活科技的啟示。科技與人力教育季刊,1(3),1-20。
教育部(2015)。Q9:生活科技課程綱要與現行課程綱要有何差異?取自https://cirn.moe.edu.tw/WebContent/index.aspx?sid=11&mid=1823
李雯棋(2016)。論杜威進步教育下的兒童中心思想。台灣教育評論月刊,5,195-201。
蔡釋鋒(2016)。STEAM 課程統整模式運用於國中生活科技教學對於學生知識整合應用之研究。國立高雄師範大學工業科技教育學系研究所碩士論文,未出版,高雄市。
游光昭、林坤誼和周家卉(2016)。英美日科技教科書分析及其對十二年國教之啟示。教科書研究,9 (1),135-166。
黃明輝(2017,12月31日)。漸進式探究實驗以提升問題解決能力。大學教學實務與研究學刊,1(2),69-93。
陳宏宇(2020)。生活科技多元評量之內容分析研究以 2000至 2018年科技教育期刊為例。國立高雄師範大學工業科技教育學系研究所碩士論文,未出版,高雄市。
國立台灣師範大學心理與教育測驗研究發展中心(2020)。十二年國教課綱國民中學標準本位評量示例彙編:科技領域生活科技。
林凱祥(2020)。國中生活科技學習興趣量表的發展與相關因素之研究。國立高雄師範大學工業科技教育學系研究所碩士論文,未出版,高雄市。
黃嘉眉(2020)。以想法為中心的合作科學探究學習平台之系統開發與初步評估。國立中央大學網路學習科技研究所碩士論文,未出版,桃園市。