跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何金倫
Chin-Lun Ho
論文名稱: 平衡相關多集區的因子設計
The balanced multi-block factorial design in correlated blocks
指導教授: 王丕承
Pi-Cheng Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 94
語文別: 中文
論文頁數: 37
中文關鍵詞: 集區設計平衡設計因子設計
外文關鍵詞: factorial designs, balanced designs, block designs
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗設計目前已經被廣泛應用於各種領域當中,當安排實驗進行時會遇到因為時間、地點或其他原因,造成條理性的誤差,在這種情況下我們會使用集區設計,但在集區內的觀測值往往彼此之間並不互為獨立,因此在考量到集區內觀測值彼此相關的情況下,如何得出一個良好的實驗便成為目前所關注的問題之一。
    本研究考量在集區內觀測值彼此之間互為相關之情形下如何利用一個有系統的方法來建立一個使主效應估計值的變異數皆相等的完全因子實驗與二分之一的部分因子實驗,並且提供範例及簡單的驗證。而使往後的實驗設計者可以只憑簡單的實驗設計知識便可以輕鬆的設計出一個良好的實驗。


    In many situations, observations in factorial design experiments may be dependent. In this article, we provide a explicit method to construct balanced designs for 2n and 2n-1 factorial designs when observations in blocks are correlated with positive correlation. We first characterized the balanced design, and then illustrate the method through balanced 23 full factorial designs and 24-1 half replicated factorial designs , finally we explain why the design made by the method is a balanced design and provide an analytical proof of balanced designs for both 2n full factorial designs and 2n-1 half replicated factorial designs .

    摘要 I Abstract II 目錄 III 表目錄 IV 第一章 緒論 1 第二章 文獻回顧 5 第三章 平衡的因子設計實驗 11 3.1 平衡完全因子多集區設計的建構方法 11 3.2 平衡2n-1部分因子多集區設計的建構方法 24 參考文獻 36

    Bisgaard, S. (1994a), “Blocking Generators for Small 2k-p Designs,”
    Journal of Quality Technology 26, 288-296.
    Bisgaard, S. (1994b), “A Note on the Definition of Resolution for Blocked 2k-p Designs,” Technometrics 36, 308-311.
    Box, G. E. P. and Hunter, J. S. (1961), “The 2n-p Fractional Factorial Designs Part I,” Technometics 3, 311-352.
    Chen, H. and Cheng, C. S. (1999), “Theory of Optimal Blocking of 2n-m Designs,” The Annals of Statistics 27, 1948-1972.
    Cheng, C. S. and Steinberg D. M. (1991),”Trend robust two-level factorial designs,” Biometrika 78, 325-336.
    Cheng, S. W. and Wu, C. F. J. (2002), “Choice of Optimal Blocking Schemes for Two-Level and Three-Level Designs,” Technometrics 44, 268-277.
    Cheng, S. W., Li, W. and Ye, K. Q. (2004),“Blocked Nonregular Two-Level Factorial Designs,” Technometrics 46, 269-279.
    Elliott, L. J., Eccleston, J.A. and Martin R. J. (1999),“An algorithm for the design of factorial experiments when the data are correlated,” Statistics and Computing 9(3), 195-201.
    Fries, A. and Hunter, W. G. (1980), “Minimum Aberration 2k-p Designs,” Technometrics 22 601-608.
    Jenkins, G. M. and Chanmugam J. (1962),”The estimation of slope when the errors are autocorrelated,” Journal of the Royal Statistical Society, Ser.B 24, 199-214.
    Martin, R. J.,Eccleston, J. A. and Jones, G. (1998),”Some results on multi-level factorial designs with dependent observations,” Journal of Statistical Planning and Inference 73, 91-111.
    Sethuraman, V. S., Raghavarao, D. and Sinha B. K. (2006),”Optimal Sn factorial designs when observations within-blocks are correlated,”Computational Statistics and Data Analysis., in press.
    Sitter, R. R., Chen, J. and Feder, M. (1997), “Fractional Resolution and Minimum Aberration in Blocked 2n-k Designs,” Technometrics 39, 382-390.
    Sun, D. X., Wu, C. F. J. and Chen, Y. (1997), “Optimal Blocking Schemes for 2n and 2n-p Designs,” Technometrics 39, 298-307.

    QR CODE
    :::