跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李建賢
Chien-Hsien Lee
論文名稱: 高解析度可變動責任週期之同步複製延遲電路
A High-Resolution Arbitrary Duty-Cycle Synchronous Mirror Delay Circuit
指導教授: 鄭國興
Kuo-Hsing Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 57
中文關鍵詞: 同步複製延遲電路
外文關鍵詞: Synchronous Mirror Delay Circuit
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現在的晶片設計,對於訊號同步電路越來越重視,所以在混和訊號電路裡有鎖相迴路(Phase-Locked Loop, PLL)和延遲迴路(Delay-Locked Loop, DLL)被廣範的運在晶片設計裡,但這兩種電路需要考慮幾個問題,第一點因為是閉迴路系統,所以有頻寬問題,需要設計電容來增加電路的穩定性,第二點在需要花幾十個時脈週期以上才能鎖定,在這過程中需要較大的功率消耗,有鑒於此,我們設計同步複製延遲電路。
    傳統的同步複製延遲電路有兩個主要的缺點,第一點是輸入訊號責任週期受到限制,第二點是是靜態相位誤差太大,使得傳統的同步延遲電路只能廣範地運用在記憶體模組裡,為了讓同步延遲電路能運用在更廣的範圍,我們會針對這兩個缺點作改善,本篇論文後有量測結果,以證明的確可以改善這兩個缺點。


    With the evolution of CMOS process technology, the clock synchronization becomes truly an important issue. Phase-Locked loop (PLL) and delay-locked loop (DLL) are often applied in many synchronization-dependent systems in order to suppress the clock skew. There are two issues to solve in the two circuits. First, both PLL and DLL are the feedback systems which are bandwidth issue. These circuit needs to design capacitance in order to increase stability. Second, during the lock-in frequency acquisition process, it results in a large standby current, which causes lots of power dissipation. Therefore, we design digital synchronous mirror delay circuit.
    There are major two issues in conventional synchronous mirror delay circuit. First, the input signal clock is not arbitrary duty cycle. Second, the static phase error is much larger. Therefore, conventional synchronous mirror delay circuit often applied in many memory modules. In order to apply in large range, we improve the two disadvantages. The proposed SMD which measure result list final chapter can solve the two issues.

    Abstract Ⅱ Contents Ⅲ Figures Captions Ⅴ Tables Captions Ⅶ Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Goals and Applications 2 1.3 Thesis Organization 3 Chapter 2 Review and Analysis of Conventional Clocking Circuit 4 2.1 Phase Alignment Circuits 4 2.2 Conventional Synchronous Mirror Delay 5 2.3 Interleaved Synchronous Mirror Delay 8 2.4 Area Reduce Interleaved SMD 10 2.5 Direct-Skew-Detect Synchronous Mirror Delay 12 2.6 Mixed-mode Synchronous Mirror Delay 13 2.7 Successive Approximation Register SMD 14 2.8 Summary 16 Chapter 3 The Proposed High-Resolution Arbitrary Duty-Cycle SMD Circuit 17 3.1 Proposed SMD circuit structure 17 3.2 The phase detector and phase shifter 19 3.2.1 The phase detector circuit of the proposed SMD 19 3.2.2 The phase detector circuit analysis 20 3.2.3 The phase shifter circuit of the proposed SMD 21 3.2.4 The phase selector and phase shifter circuit 24 3.3 The fine delay and a Mux 8:1 circuit 25 3.3.1 The blender delay circuit of the proposed SMD 25 3.3.2 The fine delay circuit of the proposed SMD 26 3.3.3 The fine delay circuit analysis 27 3.3.4 The fine delay and a Mux 8:1 circuit 28 3.3.5 The Limited operation frequency range 29 3.4 Waste power dissipation 33 3.5 Summary 34 Chapter 4 Chip Implementation 35 4.1 Introduction 35 4.2 The Concept of Signal Integrity 35 4.3 Termination 36 4.4 The Input Interface of Driver 38 4.5 The Output Interface of Driver 39 4.6 Measurement Instrument 41 4.7 Experimental Results 43 4.8 Summary 52 Chapter 5 Conclusions and Future Work 53 5.1 Conclusions 53 5.2 Future Work 54 Reference 56

    [1] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, E. Kakehashi, J.M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, K. Yoshida, and Yoshi, “A 2.5 ns Clock Access 250 MHz 256 Mb SDRAM with A Synchronous Mirror Delay,” in IEEE ISSCC Dig. Tech. Paper, pp. 374-375, Feb. 1996
    [2] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J.M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, and N. Nakanishi, “A 2.5-ns Clock Access, 250-MHz, 256-Mb SDRAM with Synchronous Mirror Delay,” IEEE J. Solid-State Circuits, vol. 31, no 11, pp. 1656-1668, Nov. 1996.
    [3] T. Saeki, H. Nakamura, and J. Shimizu, “A 10ps Jitter 2 Clock Cycle Lock Time Cmos Digital Clock Generator Based on An Interleaved Synchronous Mirror Delay Scheme,” in VLSI Circuits, Dig. Tech. Paper, pp. 109-110, Jun. 1997
    [4] T. Saeki, K. Minami, H. Yoshida, and H. Suzuki, “The Direct Skew Detect Synchronous Mirror Delay (Direct SMD) for ASICs,” Custom Integrated Circuits Conference, pp. 511-514, May. 1998.
    [5] T. Saeki, K. Minami, H. Yoshida, and H. Suzuki, “A Direct-kew-detect Synchronous Mirror Delay for Application-specific Integrated Circuits,” IEEE J. Solid-State Circuits, vol. 34, no 3, pp. 372-379, Mar. 1999.
    [6] Kihyuk Sung, Byung-Do Yang, and Lee-Sup Kim, “Low Power Clock Generator Based on An Area-reduced Interleaved Synchronous Mirror Delay Scheme,” ISCAS, Vol. 3, pp. 671-674 May. 2002.
    [7] Kihyuk Sung, Byung-Do Yang, and Lee-Sup Kim, “Low Power Clock Generator Based on Area-reduced Interleaved Synchronous Mirror Delay,” Electronics Letters, Vol. 38, no.9, pp. 399-400, Apr. 2002
    [8] Daeyun Shim, Dong-Yun Lee, Sanghun Jung, Chang-Hyun Kim, and Wonchan Kim, “An Analog Synchronous Mirror Delay for High-speed DRAM Application,” IEEE J. Solid-State Circuits, vol. 34, no 4, pp. 484-493, Apr. 1999.
    [9] Daeyun Shim, Yeon-Jae Jung, Seung-Wook Lee, and Wonchan Kim, “Fast Locking Clock Generator Using Analog Synchronous Mirror Delay Technique with Feedback Control,” Solid-State and Integrated-Circuits Technology, vol. 2, pp. 1125-1127, Oct. 2001.
    [10] Seong-Jin Jang, Young-Hyun Jun, Jae-Goo Lee, and Bai-Sun Kon, “ASMD With Duty Cycle Correction Scheme for High-Speed DRAM,” Electronics Letters, Vol. 37, no.16, pp. 1004-1006, Aug. 2001
    [11] Sei Hyung Jang, “A New Synchronous Mirror Delay With An Auto-Skew-Generation circuit,” ISCAS, Vol. 5, pp. 397-400, May. 2003
    [12] Tae-Sung Kim, Sung-Ho Wang, and Beomsup Kim, “A Low Jitter, Fast Locking Delay Locked Loop Using Measure And Control Scheme,” Mixed-Signal Design, SSMSD, Southwest Symposium on, pp. 45-50, Feb. 2001
    [13] Jeong-Seok Chae, Daejeong Kim, and Dong Myeong Kim, “Wide Range Single-Way-Pumping Synchronous Mirror Delay,” Electronics Letters, Vol. 36, no.11, pp. 939-940, May. 2000
    [14] Kihyuk Sung and Lee-Sup Kim, “A High-resolution Synchronous Mirror Delay Using Successive Approximation Register,” IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 1997-2004, Nov. 2004.
    [15] Yong Jin Yoon, Hyuck In Kwon, Jong Duk Lee, Byung Gook Park, Nam Seog Kim, Uk Rae Cho, and Hyun Guen Byun, “Synchronous Mirror Delay For Multiphase Locking,” IEEE J. Solid-State Circuits, vol. 39, no 1, pp. 150-156, Jan. 2004.
    [16] Chih-Hao Sun and Shen-Iuan Liu, "A Mixed-Mode Synchronous Mirror Delay Insensitive To Supply And Load Variations", Journal Of Analog Integrated Circuits And Signal Processings, vol. 39, pp. 75-80, April 2004
    [17] Yi-Ming Wang and Jinn-Shyan Wang, "A Low-power Half-Delay-Line Fast Skew-Compensation Circuit", IEEE J. Solid-State Circuits, vol. 39, no 6, pp. 906-918, June. 2004.
    [18] Kihyuk Sung and Lee-Sup Kim, "A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register", IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 1997-2004, Nov. 2004.
    [19] Kuo-Hsing Cheng, Chen-Lung Wu, Yu-Lung Lo and Chia-Wei Su, "A Phase-Detect Synchronous Mirror Delay For Skew-Compensation Circuit", IEEE ISCAS,. Vol.2, pp. 1070-1073, May. 2005.
    [20] Kuo-Hsing Cheng, Chen-Lung Wu, Chia-Wei Su and Yu-Lung Lo "A Phase-Locked Pulse Width Control Loop With Programmable Duty Cycle", IEEE ASIA-PACIFIC Conference on ASIC, pp. 84-87, Aug. 2004

    QR CODE
    :::