跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴澤恩
Tze-En Lai
論文名稱: 福爾摩沙衛星五號遙測儀升空前後等化係數之率定
Radiometric Calibration in Relative Response Coefficient of FORMOSAT-5 RSI Sensor Before and After Launched
指導教授: 林唐煌
Tang-Huang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 福衛五號遙測儀相對輻射校正系集經驗模態分解法感測元件等化係數雜訊
外文關鍵詞: FORMOSAT-5 RSI, Relative radiometric calibration, Ensemble Empirical Mode Decomposition, detectors, Relative response coefficient, noise
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 福爾摩沙衛星五號(福衛五號,FS-5)搭載的光學遙測儀(Remote Sensing Instrument, RSI)具有2公尺全色態與4公尺多光譜的高空間解析度,而高解析度光學衛星為確保品質在升空前後都必須進行輻射校正,包含絕對與相對校正,其中相對輻射校正主要為移除感測元件間光譜反應之差異,此差異大多反應於影像中的條紋現象。用濾波法進行相對輻射校正的方法有許多,但傳統之傅立葉轉換與小波轉換都須要做基底的假設,而近代發展的經驗模態分解法(Empirical Mode Decomposition, EMD)並未考慮雜訊的影響,造成相對校正結果之誤差,所以本研究嘗試使用將雜訊納入考量的改良式濾波法—系集經驗模態分解法(Ensemble Empirical Mode Decomposition, EEMD),針對福衛五號升空前、後之觀測影像進行相對輻射校正之測試,藉此獲取感測器元件之最佳等化係數以校正感測元件間光譜反應之差異,期能提供福衛五號遙測儀器(FS-5 RSI)相對輻射校正作業化流程之參考。
    研究結果顯示,以增益值1為例,EEDM在升空前、後影像相對校正結果的標準差(分別為全色態: 4.85,綠光: 1.56,藍光: 1.81,近紅外: 1.52和全色態: 6.42,紅光: 4.35,藍光: 5.24,近紅外: 5.19)較EDM的結果(分別為全色態: 6.39,綠光: 2.93,藍光: 2.98,近紅外: 2.90和全色態: 9.52,紅光: 6.76,藍光: 8.06,近紅外: 9.59)為佳,其改善之百分比可高達90%以上。此一結果亦說明雜訊之考量在率定FS-5 RSI等化係數之重要性,尤其是升空前、後RSI因環境差所造成雜訊的變化,亦將明顯地影響等化係數之校正。更重要的是,FS-5 RSI升空後之雜訊亦將隨時間而有所變化,因此本研究(EEDM)所考量雜訊之影響確實可以滿足實際觀測影像之需求,對於福衛五號遙測儀器(FS-5 RSI)相對輻射校正作業化具有相當的實用性與參考價值。


    Remote Sensing Instrument (RSI) is the primary optical sensor on board FORMOSAT-5 (FS-5), which can provide 2-meter in panchromatic and 4-meter in multi-spectral of high-spatial-resolution imagery. To maintain the radiometric quality, the periodical radiometric calibration is essential no matter before and after launched. For the relative radiometric calibration which related to the non-uniform response between detectors, the general methods for relative radiometric calibration such as Fourier transform and wavelet transform, are usually under the assumption of presetting basic functions without considering the noise. Although the modern development method named Empirical Mode Decomposition(EMD) is suitable for the relative calibration of non-stable signal but still been affected by the noise. Therefore, this study focuses on the issue caused from noise for improving the result of relative calibration. The Ensemble Empirical Mode Decomposition(EEMD) method is applied to calibrate FS-5 pre-flight and on-orbit data for relative radiometric calibration of RSI by considering the effect of noise.
    The calibration results show that all the calibrated results of EEMD are better than EMD results for both pre-flight and on-orbit images. Taking the results of gain number 1 (G1) for example, standard deviation of calibrated imageries using EEMD (pre-flight: PAN: 4.85, B2: 1.56, B3: 1.81, B4: 1.52, on-orbit: PAN: 6.42, B1: 4.35, B3: 5.24, B4: 5.19) is lower than EMD (pre-flight: PAN:6.39, B2: 2.93, B3: 2.98, B4: 2.90, on-orbit: PAN: 9.52, B1: 6.76, B3: 8.06, B4: 9.59) and the improving ratio can up to 90%. The results also indicate that the impact of noise is significant to FS-5 RSI relative response coefficients. More importantly, the proposed EEMD approach can further facilitate the operational procedure of FS-5 RSI relative calibration under the conditions which the noise changes as time goes by.

    摘要......I Abstract......III 致謝......V 目錄......VI 圖目錄......VIII 表目錄......XIV 第一章 緒論......1 1.1前言......1 1.2文獻回顧......3 1.3研究目的......7 第二章 資料收集與處理......8 2.1福衛五號遙測儀......8 2.2影像資料......9 2.2.1升空前測試影像......9 2.2.2在軌影像......14 第三章 研究理論與方法......16 3.1輻射轉換方程......16 3.2系集經驗模態分解法(EEMD)......17 3.2.1簡介......17 3.2.2經驗模態分解法(EMD)......18 3.2.3系集經驗模態分解法(EEMD)......20 3.2.4感測器元件等化係數......21 第四章 結果與分析......22 4.1感測器間輻射反應相對差異......22 4.1.1相對輻射校正-升空前影像......26 4.1.2相對輻射校正-在軌影像......45 4.2感測器元件等化係數......52 4.2.1等化係數差異比較......52 4.2.2 等化係數變化分析......60 4.3實拍影像相對輻射校正......62 第五章 結論與展望......67 5.1結論......67 5.2展望......68 參考文獻......69

    1.林唐煌、劉振榮、李國光、林孟岳、張國恩、連偉宏和廖敦佑(2014),福爾摩沙五號衛星光學遙測酬載之在軌輻射校正先期規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-103077),未出版。

    2.林唐煌、劉振榮、廖敦佑和曾聖凱(2015),福爾摩沙五號光學遙測酬載之特定目標校正(Vicarious Calibration)與相互校正(Cross Calibration)方法之規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-104096),未出版。

    3.林唐煌、黃智遠、張智安、劉振榮、陳良健、曾聖凱、蕭閔中(2016),影像品質在軌率定作業,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-105068),未出版。

    4.財團法人國家實驗研究院國家太空中心網頁,福爾摩沙衛星五號衛星特性。2019年3月4號,取自
    https://www.nspo.narl.org.tw/tw2015/projects/FORMOSAT-5/satellite.html。

    5.陳振雄(2010),應用希爾伯特-黃轉換之訊號濾波研究. Journal of Science and Engineering Technology, 6(1), 75-84.

    6.曾聖凱(2016),福衛二號絕對輻射校正及全球動態量程之建立。國立中央大學太空科學研究所碩士論文,中壢。

    7.廖敦佑(2016),福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正。國立中央大學太空科學研究所碩士論文,中壢。

    8.蕭閔中(2017),應用經驗模態分解法在福衛五號遙測照相儀之相對輻射校正。國立中央大學遙測科技碩士學位學程碩士論文,中壢。

    9.Alok Kumar Shrestha. (2010). Relative Gain Characterization and Correction for Pushbroom Sensors Based on Lifetime Image Statistics and Wavelet Filtering. South Dakota State University, U.S.A.

    10.Angal, A., & Helder, D. (2005). Advanced Land Imager relative gain characterization and correction (Doctoral dissertation, Electrical Engineering and Computer Science Department, South Dakota State University).

    11.Aramo, C., Brack, J., Caruso, R., D'Urso, D., Fazio, D., Fonte, R., ... & Matthews, J. A. J. (2005). Optical relative calibration and stability monitoring for the Auger fluorescence detector. arXiv preprint astro-ph/0507577.

    12.Biday, S. G., & Bhosle, U. (2012). Relative radiometric correction of multitemporal satellite imagery using Fourier and wavelet transform. Journal of the Indian Society of Remote Sensing, 40(2), 201-213.

    13.Chander, G., Helder, D. L., & Boncyk, W. C. (2002). Landsat-4/5 band 6 relative radiometry. IEEE Transactions on Geoscience and Remote Sensing, 40(1), 206-210.

    14.Chander, G., & Markham, B. (2003). Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on geoscience and remote sensing, 41(11), 2674-2677.

    15.Helder, D. L. (1993, November). Comparison of MSS relative radiometric calibration methods. In Recent Advances in Sensors, Radiometric Calibration, and Processing of Remotely Sensed Data (Vol. 1938, pp. 46-55).

    16.Henderson, B. G., & Krause, K. S. (2004, October). Relative radiometric correction of QuickBird imagery using the side-slither technique on orbit. In Earth Observing Systems IX (Vol. 5542, pp. 426-437). International Society for Optics and Photonics.

    17.Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995.

    18.Kuo-Hsien Hsu, Sunny Lee, Cynthia Liu, (2016). Pre-flight FORMOSAT-5 Relative Radiometric Calibration. NSPO.

    19.Pesta, F., Bhatta, S., Helder, D., & Mishra, N. (2015). Radiometric non-uniformity characterization and correction of landsat 8 oli using earth imagery-based techniques. Remote Sensing, 7(1), 430-446.

    20.Schwerdt, M., Bräutigam, B., Bachmann, M., & Döring, B. (2008, June). TerraSAR-X calibration results. In 7th European Conference on Synthetic Aperture Radar (pp. 1-4). VDE.

    21.Teillet, P. M., Horler, D. N. H., & O'Neill, N. T. (1997). Calibration, validation, and quality assurance in remote sensing: A new paradigm. Canadian Journal of Remote Sensing, 23(4), 401-414.

    22.Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41.

    23.Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51(3), 117-126.

    QR CODE
    :::