跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高亞詮
Ya-chuan Gao
論文名稱: 含2-氨基-5-硫基-1,3,4-噻二唑之金屬配位聚合物之合成、結構解析及介電性質研究
Synthesis, Structural Characterization and Dielectric Properties of Metal Complexes with 2-Amino-5- mercapto-1,3,4-thiadiazole
指導教授: 李光華
Kwang-Hwa Lii
呂光烈
Kuang-lieh Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 130
中文關鍵詞: 配魏化學超分子化學磁性介電常數
外文關鍵詞: Coordination Chemistry, Supramolecular Chemistry, Magnetic, Dielectric
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用過渡金屬離子和2-amino-5-mercapto-1,3,4-thiadiazole (Hamtd) 經由自組裝的方式合成出{[Ni4(amtd)6(H2O)6(OH)2]‧(CH3OH)(H2O) (1), {[Ni4(amtd)6(H2O)6(OH)2]‧(H2O)2 (2), 5,5'-disulfanediylbis(1,3,4-thiadiazol-2-amine) (3)、{[Ni4(amtd)6(azpy)(OH)2(H2O)3(CH3OH)]‧(CH3OH)n (4), [Co(amtd)2]n (5)、[Mn2(amtd)4]n (6)等六個化合物,並進一步探討其晶體結構特性、熱穩定性及介電等物性的鑑定分析。

    鎳金屬離子和Hamtd配子於甲醇、水的混合溶劑中,以室溫靜置的方式可同時得到化合物1、2。相同條件下若將反應物濃度降低可得純化合物1。而利用水浴80 °C的條件下可生成純化合物2。化合物1、2具有相似的固態結構,是以六配位金屬中心形成四核金屬簇的單分子結構,單分子間藉由氫鍵作用力與π−π 作用力形成三維的超分子架構。於純化合物2之製備條件下,若加入4,4'-azopyridine ,溶液之pH值為6~7之間,發現Hamtd配子耦合成具有S−S單鍵之雙硫有機化合物3。有趣的是,若將原本可形成化合物3的溶液酸鹼值調為9~10之間,則得到化合物4,結構解析顯示4,4'-azopyridine將四核鎳的金屬簇連接成一維結構。化合物5、6的金屬中心分別為Co與Mn,是以六配位的金屬中心所形成的一維結構。
    在磁性方面,化合物1、化合物2之直流磁化率χMT數據顯示,兩者為反鐵磁性。化合物5金屬中心為鈷,磁性量測顯示為順磁性,化合物6之中心金屬為錳,為鐵磁性材料。
    在介電性質的量測方面,化合物1、2由於含有高極性的溶劑水與甲醇,故所量測到的κ值大約在8~9,屬於high-κ材料。化合物5、6結構中,沒有極性客分子的存在,所量測到的數值大約在2.4~2.6,是屬於low-κ的材料。


    In this thesis, a series of supramolecular compounds and coordination polymers were synthesized via self-assembly processes and their structures and properties were examined.
    Compounds {[Ni4(amtd)6(H2O)6(OH)2]‧(CH3OH)(H2O)} (1), and {[Ni4(amtd)6(H2O)6(OH)2]‧(H2O)2} (2) were simultaneously obtained by the reaction of nickel salts with 2-amino-5-mercapto-1,3,4-thiadiazole (Hamtd) ligand in a mixture of H2O/MeOH at room temperature. Under similar reaction conditions, pure compound 1 was obtained when the concentration of the solution was decreased. Interestingly, pure compound 2 was the only product produced at 80 °C under the same conditions. The reaction of Ni2+ with Hamtd in a H2O/MeOH solution in the presence of 4,4'-azopyridine (azpy) ligand at 50 °C, while maintaining the pH at 6−7, resulted in the generation of the disulfide compound 5,5'-disulfanediylbis(1,3,4-thiadiazol-2-amine) (3). By adjusting the pH value of the above solution to 9−10, compound {[Ni4(amtd)6(azpy)(OH)2(H2O)3 (CH3OH)]‧(CH3OH)2}n (4) was produced. Treatment of Co2+ and Hamtd in H2O at 140 °C afforded a ID coordination polymer [Co(amtd)2]n (5). The reaction of Mn2+ with Hamtd in a mixture of H2O/MeOH at 50 °C resulted in the formation of [Mn2(amtd)4]n (6). Compounds 1−6 were characterized by infrared spectroscopy (FT-IR), powder X-ray diffraction, (PXRD), elemental analysis (EA), and thermogravimetric analysis (TGA). Their structures were further confirmed by single-crystal X-ray diffraction analysis.
    The dielectric properties of compounds 1, 2, 5 and 6 were investigated. The results of dielectric measurement of compounds 1 and 2 revealed a κ value of 8.59 for 1 and 10.09 for 2 at 1 MHz. The high dielectric constant of these compounds can be attributed to the presence of polar guest molecules. On the contrary, the dielectric values for compounds 5 and 6 were found to be 2.42 for 5 and 2.57 for 6 at 1 MHz. These low κ values are due to the absence of polar guest molecules. This fundamental study encouraged us to prepare low dielectric materials from simple and low cost starting materials via self-assembly processes.

    摘要 ii Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xi 第一章 序論 1 1.1 超分子化學與自組裝 1 1.2 配位聚合物 6 1.3 MOF結構設計 7 1.4 實驗條件控制 10 1.5 實驗方法 14 1.6 磁性 17 1.7 介電常數 20 第二章 實驗設計 22 2.1 文獻回顧與實驗 22 2.2 研究動機 23 第三章 實驗部分 26 3.1 儀器與藥品 26 3.2 有機配子之合成 28 3.3 化合物合成 29 3.3-1 2-Amino-5-mercapto-1,3,4-thiadiazole金屬錯合物之合成 29 第四章 結果與討論 33 Part I 33 4.1-1化合物{[Ni4(amtd)6(H2O)6(OH)2]‧(CH3OH)(H2O)} (1) 、{[Ni4(amtd)6(H2O)6(OH)2]‧(H2O)2} (2) 之合成、結構及性質探討: 33 4.1-2 {[Ni4(amtd)6(H2O)6(OH)2]‧(CH3OH)(H2O)} (1) 結構解析 34 4.1-3 {[Ni4(amtd)6(H2O)6(OH)2]‧(H2O)2} (2) 結構解析 39 4.1-4 純化合物1、純化合物2之製備方法 43 化合物{[Ni4(amtd)6(H2O)6]‧(CH3OH)(H2O)} (1) 43 化合物{[Ni4(amtd)6(H2O)6(OH)2]‧(H2O)2} (2) 44 化合物鑑定與性質量測 45 4.1-5 化合物5,5'-disulfanediylbis(1,3,4-thiadiazol-2-amine) (3)之合成 53 4.1-6 化合物{[Ni4(amtd)6(azpy)(OH)2(H2O)3(CH3OH)]‧(CH3OH)2}n (4)之合成與結構解析 56 Part II 62 4.2 化合物[Co(amtd)2]n (5)之合成、結構及性質探討: 62 4.2-1 實驗合成 62 4.2-2 化合物[Co(amtd)2]n (5) 結構解析 63 4.2-3化合物[Co(amtd)2]n (5) 物理性質測量 67 4.3 化合物[Mn2(amtd)4]n (6)之合成、結構及性質探討: 71 4.3-1 實驗合成 71 4.3-2 化合物[Mn2(amtd)4]n (6) 結構解析 72 4.3-3 化合物[Mn2(amtd)4]n (6) 物理性質測量 75 4.4化合物之介電常數量測 76 第五章 結論 79 參考文獻 80 附錄 82

    1. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017−7036; (b) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495−2496.
    2. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore S. S.; Cram, D. J. J. Am. Chem. Soc. 1977, 2564−2571.
    3. Lehn, J. M. Nobel lecture 1987.
    4. (a) Lehn, J. M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89−112; (b) Lehn, J. M., Angew. Chem. Int. Ed. Engl. 1996, 35, 1838−1840; (c) Lehn, J. M., Angen. Chem. Int. Ed. Engl. 1990, 29, 1304−1319.
    5. Gellman, S. H., Chem. Rev. 1997, 97, 1231–1232.
    6. Bravoa, J. A.; Raymoa F. M.; Stoddart, J. F.; Andrew, J. P.; Whiteb; Williams, D. J. Eur. J. Org. Chem. 1998, 45, 2565−22571.
    7. Freeman, W. A., Acta Cryst. 1984, 40, 382−387.
    8. http://catalog.flatworldknowledge.com/bookhub/reader/2273?e=ball-ch10_s01.
    9. https://sites.google.com/site/erhsakchemistryandphysics/home.
    10. http://socratic.org/questions/how-do-molecular-compounds-bond.
    11. Janiak, C., J. Chem. Soc. Dalton Trans. 2000, 21, 3885−3896.
    12. Brammer, L. Chem. Soc. Rev. 2004, 33, 476−489.
    13. http://en.wikipedia.org/wiki/DNA#mediaviewer/File:DNA_chemical_structur e.svg.
    14. (a) Sanchez, C.; Belleville, P.; Popalld, M.; Nicoleab, L.Chem. Soc. Rev. 2010, 696−753; (b) Batten, S. R.; Champness, N. R.; Chen, X. M.; Javier, G. M.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J. Pure Appl. Chem. 2013, 85, 1715−1724.
    15. (a) Eddaoudi, M.; Kim J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi O. M. Science 2002, 295, 469−472; (b) Fernando, J.; Romo, U.; Hunt, J. R.; Furukawa, H.; Klöck C.; O'Keeffe M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570−4571.
    16. (a) Murray, L. J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.; Brown, C. M.; Long J. R. J. Am. Chem. Soc. 2010, 132, 7856−7857; (b) Humphrey, S. M.; Chang J. S.; Jhung, S. H.; Yoon J. W.; Wood, T. P. Angew. Chem. Int. Ed. 2007, 46, 272−275.
    17. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 1450−1459.
    18. Stoddart, J. F.; Andrew, J. P.; Williams, D. J. Eur. J. Org. Chem. 1998, 45, 2565−2571.
    19. Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem. Int. Ed. 2004, 2334−2375.
    20. O. Delgado Friedrichs; M. O'Keeffe; O. M. Yaghi, Acta Crystallogr. Sec. A 2003, 59, 22−27.
    21. (a) Dong, Y. B.; Jiang, Y. Y.; Li, J.; Ma, J. P.; Liu, F. L.; Tang, B.; Huang, R. Q.; Batten, S. R. J. Am. Chem. Soc. 2007, 129, 4520−4521; (b) Masaoka, S.; Tanaka, D.; Nakanishi, Y.; Kitagawa, S. Angew. Chem. Int. Ed. 2004, 43, 2530−2534.
    22. Long, L. S. CrystEngComm 2010, 12, 1354−1365.
    23. (a) Fan, J.; Shu, M. H.; Okamura, T.A.; Li, Y. Z.; Sun, W. Y.; Tanga, W. X.; Ueyamac, N. New J. Chem. 2003, 27, 1307−1309; (b) Millange F.; Serre C.; Guillou, N.; Walton, R. I. Angew. Chem. Int. Ed. 2008, 47, 4100−4105.
    24. Lu Y. L.; Wu, J. Y.; Chan, M. C.; Huang, S. M.; Lin, C. S.; Chiu, T. W.; Liu, Y. H.; Wen,Y. S.; Ueng, C. H.; Chin, T. M.; Hung, C. H.; Lu K. L. Inorg. Chem. 2006, 45, 2430−2437.
    25. Tanaka, D.; Kitagawa, S.; Chem. Mater. 2008, 20, 922–931.
    26. Zagorodniy, K.; Seifert, G.; Hermann, H. Appl. Phys. Lett. 2010, 97, 251905−251906.
    27. Chen, S. C.; Zhang, J.; Yu, R. M.; Wu, X. Y.; Xie, Y. M.; Wanga, F.; Lu, C. Z., Chem. Commun. 2010, 1449−1451.
    28. Hu, S.; Yu, F. Y.; Zhang, P.; Zhou, A. J. Eur. J. Inorg. Chem. 2012, 25, 3669−3673.
    29. Friedrichs, O. D.; O'Keeffe, M.; Yaghi,O. M. Phys. Chem. 2007, 9, 1035−1043.
    30. Ganorkar, M. C.; Studies in Conversation 1988, 33, 97−101.
    31. Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov M. R.; Saiz, E. Chem. Mater. 2013, 25, 27−33.
    32. Dong, X. Y.; Wang, R.; Li, J. B.; S. Q.; Houa, H. W.; Mak, C. W. Chem. Commum. 2013, 49, 10590−10592.
    33. Usman, M.; Lee, C. H.; Hung, D. S.; Lee, S. F.; Wang, C. C.; Luo, T. T.; Zhao, L.; Wu, M. K.; Lu, K. L. J. Mater. Chem. C 2014, 3762−3768.
    34. Lang, J. P. Chem. Commun. 2013, 49, 9248−9250.
    35. Ginsberg, A. P. Inorg. Chim. Acta. 1971, 5, 45−68.
    36. Harman, A. K.; Ninomiya, S.; Adachi, S. J. Appl. Phys. 1994, 76, 8032−8036.

    QR CODE
    :::