| 研究生: |
高亞詮 Ya-chuan Gao |
|---|---|
| 論文名稱: |
含2-氨基-5-硫基-1,3,4-噻二唑之金屬配位聚合物之合成、結構解析及介電性質研究 Synthesis, Structural Characterization and Dielectric Properties of Metal Complexes with 2-Amino-5- mercapto-1,3,4-thiadiazole |
| 指導教授: |
李光華
Kwang-Hwa Lii 呂光烈 Kuang-lieh Lu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 配魏化學 、超分子化學 、磁性 、介電常數 |
| 外文關鍵詞: | Coordination Chemistry, Supramolecular Chemistry, Magnetic, Dielectric |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用過渡金屬離子和2-amino-5-mercapto-1,3,4-thiadiazole (Hamtd) 經由自組裝的方式合成出{[Ni4(amtd)6(H2O)6(OH)2]‧(CH3OH)(H2O) (1), {[Ni4(amtd)6(H2O)6(OH)2]‧(H2O)2 (2), 5,5'-disulfanediylbis(1,3,4-thiadiazol-2-amine) (3)、{[Ni4(amtd)6(azpy)(OH)2(H2O)3(CH3OH)]‧(CH3OH)n (4), [Co(amtd)2]n (5)、[Mn2(amtd)4]n (6)等六個化合物,並進一步探討其晶體結構特性、熱穩定性及介電等物性的鑑定分析。
鎳金屬離子和Hamtd配子於甲醇、水的混合溶劑中,以室溫靜置的方式可同時得到化合物1、2。相同條件下若將反應物濃度降低可得純化合物1。而利用水浴80 °C的條件下可生成純化合物2。化合物1、2具有相似的固態結構,是以六配位金屬中心形成四核金屬簇的單分子結構,單分子間藉由氫鍵作用力與π−π 作用力形成三維的超分子架構。於純化合物2之製備條件下,若加入4,4'-azopyridine ,溶液之pH值為6~7之間,發現Hamtd配子耦合成具有S−S單鍵之雙硫有機化合物3。有趣的是,若將原本可形成化合物3的溶液酸鹼值調為9~10之間,則得到化合物4,結構解析顯示4,4'-azopyridine將四核鎳的金屬簇連接成一維結構。化合物5、6的金屬中心分別為Co與Mn,是以六配位的金屬中心所形成的一維結構。
在磁性方面,化合物1、化合物2之直流磁化率χMT數據顯示,兩者為反鐵磁性。化合物5金屬中心為鈷,磁性量測顯示為順磁性,化合物6之中心金屬為錳,為鐵磁性材料。
在介電性質的量測方面,化合物1、2由於含有高極性的溶劑水與甲醇,故所量測到的κ值大約在8~9,屬於high-κ材料。化合物5、6結構中,沒有極性客分子的存在,所量測到的數值大約在2.4~2.6,是屬於low-κ的材料。
In this thesis, a series of supramolecular compounds and coordination polymers were synthesized via self-assembly processes and their structures and properties were examined.
Compounds {[Ni4(amtd)6(H2O)6(OH)2]‧(CH3OH)(H2O)} (1), and {[Ni4(amtd)6(H2O)6(OH)2]‧(H2O)2} (2) were simultaneously obtained by the reaction of nickel salts with 2-amino-5-mercapto-1,3,4-thiadiazole (Hamtd) ligand in a mixture of H2O/MeOH at room temperature. Under similar reaction conditions, pure compound 1 was obtained when the concentration of the solution was decreased. Interestingly, pure compound 2 was the only product produced at 80 °C under the same conditions. The reaction of Ni2+ with Hamtd in a H2O/MeOH solution in the presence of 4,4'-azopyridine (azpy) ligand at 50 °C, while maintaining the pH at 6−7, resulted in the generation of the disulfide compound 5,5'-disulfanediylbis(1,3,4-thiadiazol-2-amine) (3). By adjusting the pH value of the above solution to 9−10, compound {[Ni4(amtd)6(azpy)(OH)2(H2O)3 (CH3OH)]‧(CH3OH)2}n (4) was produced. Treatment of Co2+ and Hamtd in H2O at 140 °C afforded a ID coordination polymer [Co(amtd)2]n (5). The reaction of Mn2+ with Hamtd in a mixture of H2O/MeOH at 50 °C resulted in the formation of [Mn2(amtd)4]n (6). Compounds 1−6 were characterized by infrared spectroscopy (FT-IR), powder X-ray diffraction, (PXRD), elemental analysis (EA), and thermogravimetric analysis (TGA). Their structures were further confirmed by single-crystal X-ray diffraction analysis.
The dielectric properties of compounds 1, 2, 5 and 6 were investigated. The results of dielectric measurement of compounds 1 and 2 revealed a κ value of 8.59 for 1 and 10.09 for 2 at 1 MHz. The high dielectric constant of these compounds can be attributed to the presence of polar guest molecules. On the contrary, the dielectric values for compounds 5 and 6 were found to be 2.42 for 5 and 2.57 for 6 at 1 MHz. These low κ values are due to the absence of polar guest molecules. This fundamental study encouraged us to prepare low dielectric materials from simple and low cost starting materials via self-assembly processes.
1. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017−7036; (b) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495−2496.
2. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore S. S.; Cram, D. J. J. Am. Chem. Soc. 1977, 2564−2571.
3. Lehn, J. M. Nobel lecture 1987.
4. (a) Lehn, J. M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89−112; (b) Lehn, J. M., Angew. Chem. Int. Ed. Engl. 1996, 35, 1838−1840; (c) Lehn, J. M., Angen. Chem. Int. Ed. Engl. 1990, 29, 1304−1319.
5. Gellman, S. H., Chem. Rev. 1997, 97, 1231–1232.
6. Bravoa, J. A.; Raymoa F. M.; Stoddart, J. F.; Andrew, J. P.; Whiteb; Williams, D. J. Eur. J. Org. Chem. 1998, 45, 2565−22571.
7. Freeman, W. A., Acta Cryst. 1984, 40, 382−387.
8. http://catalog.flatworldknowledge.com/bookhub/reader/2273?e=ball-ch10_s01.
9. https://sites.google.com/site/erhsakchemistryandphysics/home.
10. http://socratic.org/questions/how-do-molecular-compounds-bond.
11. Janiak, C., J. Chem. Soc. Dalton Trans. 2000, 21, 3885−3896.
12. Brammer, L. Chem. Soc. Rev. 2004, 33, 476−489.
13. http://en.wikipedia.org/wiki/DNA#mediaviewer/File:DNA_chemical_structur e.svg.
14. (a) Sanchez, C.; Belleville, P.; Popalld, M.; Nicoleab, L.Chem. Soc. Rev. 2010, 696−753; (b) Batten, S. R.; Champness, N. R.; Chen, X. M.; Javier, G. M.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J. Pure Appl. Chem. 2013, 85, 1715−1724.
15. (a) Eddaoudi, M.; Kim J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi O. M. Science 2002, 295, 469−472; (b) Fernando, J.; Romo, U.; Hunt, J. R.; Furukawa, H.; Klöck C.; O'Keeffe M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570−4571.
16. (a) Murray, L. J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.; Brown, C. M.; Long J. R. J. Am. Chem. Soc. 2010, 132, 7856−7857; (b) Humphrey, S. M.; Chang J. S.; Jhung, S. H.; Yoon J. W.; Wood, T. P. Angew. Chem. Int. Ed. 2007, 46, 272−275.
17. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 1450−1459.
18. Stoddart, J. F.; Andrew, J. P.; Williams, D. J. Eur. J. Org. Chem. 1998, 45, 2565−2571.
19. Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem. Int. Ed. 2004, 2334−2375.
20. O. Delgado Friedrichs; M. O'Keeffe; O. M. Yaghi, Acta Crystallogr. Sec. A 2003, 59, 22−27.
21. (a) Dong, Y. B.; Jiang, Y. Y.; Li, J.; Ma, J. P.; Liu, F. L.; Tang, B.; Huang, R. Q.; Batten, S. R. J. Am. Chem. Soc. 2007, 129, 4520−4521; (b) Masaoka, S.; Tanaka, D.; Nakanishi, Y.; Kitagawa, S. Angew. Chem. Int. Ed. 2004, 43, 2530−2534.
22. Long, L. S. CrystEngComm 2010, 12, 1354−1365.
23. (a) Fan, J.; Shu, M. H.; Okamura, T.A.; Li, Y. Z.; Sun, W. Y.; Tanga, W. X.; Ueyamac, N. New J. Chem. 2003, 27, 1307−1309; (b) Millange F.; Serre C.; Guillou, N.; Walton, R. I. Angew. Chem. Int. Ed. 2008, 47, 4100−4105.
24. Lu Y. L.; Wu, J. Y.; Chan, M. C.; Huang, S. M.; Lin, C. S.; Chiu, T. W.; Liu, Y. H.; Wen,Y. S.; Ueng, C. H.; Chin, T. M.; Hung, C. H.; Lu K. L. Inorg. Chem. 2006, 45, 2430−2437.
25. Tanaka, D.; Kitagawa, S.; Chem. Mater. 2008, 20, 922–931.
26. Zagorodniy, K.; Seifert, G.; Hermann, H. Appl. Phys. Lett. 2010, 97, 251905−251906.
27. Chen, S. C.; Zhang, J.; Yu, R. M.; Wu, X. Y.; Xie, Y. M.; Wanga, F.; Lu, C. Z., Chem. Commun. 2010, 1449−1451.
28. Hu, S.; Yu, F. Y.; Zhang, P.; Zhou, A. J. Eur. J. Inorg. Chem. 2012, 25, 3669−3673.
29. Friedrichs, O. D.; O'Keeffe, M.; Yaghi,O. M. Phys. Chem. 2007, 9, 1035−1043.
30. Ganorkar, M. C.; Studies in Conversation 1988, 33, 97−101.
31. Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov M. R.; Saiz, E. Chem. Mater. 2013, 25, 27−33.
32. Dong, X. Y.; Wang, R.; Li, J. B.; S. Q.; Houa, H. W.; Mak, C. W. Chem. Commum. 2013, 49, 10590−10592.
33. Usman, M.; Lee, C. H.; Hung, D. S.; Lee, S. F.; Wang, C. C.; Luo, T. T.; Zhao, L.; Wu, M. K.; Lu, K. L. J. Mater. Chem. C 2014, 3762−3768.
34. Lang, J. P. Chem. Commun. 2013, 49, 9248−9250.
35. Ginsberg, A. P. Inorg. Chim. Acta. 1971, 5, 45−68.
36. Harman, A. K.; Ninomiya, S.; Adachi, S. J. Appl. Phys. 1994, 76, 8032−8036.