跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王昇龍
Sheng-Lung Wang
論文名稱: 智慧型控制數位化串聯諧振轉換器之研製
Design and Implementation of DSP-based Intelligent Control for Series Resonant Converter
指導教授: 林法正
Faa-Jeng Lin
薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 機率型模糊類神經網路對稱歸屬函數之TSK機率模糊類神經網路數位訊號處理器串聯諧振轉換器
外文關鍵詞: probabilistic fuzzy neural network, TSK-type probabilistic fuzzy neural network with asymmetric membership function, digital signal processor, series resonant converter
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為研製以數位訊號處理器為基礎之智慧型控制串聯諧振轉換器,其中串聯諧振電路採用LLC架構。在LLC架構中,是以固定50%責任週期之互補訊號驅動功率晶體,並藉由調變頻率使變壓器一次側之漏電感、激磁電感、諧振電容以及開關上的寄生元件產生諧振,達到零電壓切換來降低元件的切換損失,且在變壓器二次側整流電路使用同步整流功能,以功率開關取代二極體來減少導通損失進而提升系統效率。為了改善輸出電壓在負載調節時的暫態響應,本文提出兩種智慧型控制器取代比例積分控制器,一個是機率型模糊類神經網路,另一個是非對稱歸屬函數之TSK機率模糊類神經網路。本文將詳細介紹機率型模糊類神經網路以及非對稱歸屬函數之TSK機率模糊類神經網路控制器之網路架構、線上學習法則以及收斂性分析。最後透過實驗結果來驗證其可行性。


    The purpose of this thesis is to develop a digital signal processor (DSP) based intelligent control of series resonant converter (SRC). The SRC is constructed using LLC resonant tank which is driven by a half-bridge circuit with fixed 50%-duty carrier frequency. The resonant phenomenon can be obtained by using of the leakage inductance of primary coil, the magnetizing inductance of the transformer, the resonant capacitor and parasitic component of power MOSFETs. Moreover, the zero-voltage-switching (ZVS) can be achieved using resonant phenomenon to reduce the switching loss. Furthermore, the synchronous rectifier is added in the secondary side of transformer by using the power MOSFETs in place of the diode to reduce the conduction loss. In addition, to improve the transient response of the voltage regulation during load variation, two intelligent controls are proposed. One is the probabilistic fuzzy neural network (PFNN), and the other is the TSK-type probabilistic fuzzy neural network with asymmetric membership function (TSKPFNN-AMF). The network structures, online learning algorithms and convergence analyses of the PFNN and the TSKPFNN-AMF controls are introduced in detail. Finally, the feasibility of the proposed control schemes are verified through experimentation.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究背景 3 1.3 論文大綱 7 1.4 論文貢獻 8 第二章 串聯諧振轉換器原理分析及數位訊號處理器 10 2.1 前言 10 2.2 串聯諧振電路 10 2.3 半橋串聯諧振轉換器之電路分析 12 2.4 半橋串聯諧振轉換器電路動作原理 14 2.5 串聯諧振轉換器之同步整流及達到零電壓切換的條件 23 2.6 串聯諧振轉換器之輕載輸出電壓調控 26 2.7 半橋串聯諧振轉換器之設計 28 2.7.1 功率晶體之選擇 30 2.7.2 諧振槽元件設計 31 2.7.3 變壓器設計 33 2.7.4 輸出電容設計 36 2.7.5 串聯諧振轉換器之數位控制 37 2.7.6 數位訊號處理器之類比數位保護電路 38 2.7.7 電壓回授硬體電路 39 2.8 數位訊號處理器TMS320F28035 40 2.8.1 數位訊號處理器TMS320F28035功能簡介 40 2.8.2 記憶體規劃 41 2.9 週邊功能介紹 43 2.9.1 增強型脈波寬度調變模組 43 2.9.2 中斷處理之流程 45 2.9.3 類比/數位轉換器 46 2.9.4 串列週邊介面模組 47 2.9.5 串列傳輸介面模組 49 2.10 實驗結果 50 第三章 機率型模糊類神經網路控制 55 3.1 簡介 55 3.2 機率型模糊類神經網路架構 55 3.3 線上學習法則 59 3.4 收斂性分析 61 3.5 軟體架構 62 3.6 實驗結果 63 第四章 非對稱歸屬函數之TSK機率模糊類神經網路控制 67 4.1 簡介 67 4.2 非對稱歸屬函數之TSK機率模糊類神經網路架構 67 4.3 線上學習法則 71 4.4 收斂性分析 74 4.5 軟體架構 76 4.6 實驗結果 77 第五章 頻率響應分析 81 5.1 前言 81 5.2 比例積分控制系統設計 81 5.3 比例積分控制系統模擬與實驗 83 5.4 智慧型控制系統實驗 85 第六章 結論與未來展望 90 6.1 結論 90 6.2 未來展望 90 參考文獻 91 附錄 電力線通訊 99 1 簡介 99 2 串列傳輸/乙太網路轉換 100 3 電力線/乙太網路轉換 101 3.1 Atheros Intellon 6400晶片組 103 4 實驗結果 104

    [1] 江炫樟譯,電力電子學,第三版,全華科技圖書,民國九十三年。
    [2] 梁適安,交換式電源供應器之理論與實務設計(修訂版),全華科技圖書,台北,民國九十七年。
    [3] 梁適安譯,高頻交換式電源供應器原理與設計,第二版,全華科技圖書,民國九十一年。
    [4] M. Marvi and A. Fotowat-Ahmady, “A fully ZVS critical conduction mode boost PFC,” IEEE Trans. Indust. Electron., vol. 27, no. 4, pp. 1958-1965, Apr. 2012.
    [5] B. Yang, F. C. Lee, A. J. Zhang and G. Huang, “LLC resonant converter for front end DC-DC conversion,” in Proc. of IEEE APEC, pp. 1108-1112, 2002.
    [6] B. Yang, “Topology investigation for frond end DC-DC power conversion for distributed power system,” Ph.D. Dissertation, Virginia Tech, Sept. 2003.
    [7] 陳宜宏,實現數位控制之LLC 諧振轉換器,碩士論文,國立台北科技大學電機工程系,台北市,2010。
    [8] 謝士弘,LLC半橋串聯諧振式轉換器之設計考量與研製,碩士論文,國立台灣科技大學電子工程系,台北市,2006。
    [9] 黃賢德,高效率LLC諧振式切換式電源供應器電路之設計與分析,碩士論文,國立東華大學電機工程系,花蓮,2006。
    [10] 電子工程專輯,http://tech.digitmes.com.tw,數位電源技術之架構與應用。
    [11] 電子&電腦資訊網,http://www.compotech.com.tw,數位電源時勢所趨。
    [12] 官啟玄,以TSK機率模糊類神經網路控制之磷酸鋰鐵電池儲能系統之研製,碩士論文,國立中央大學電機工程學系,桃園,2012。
    [13] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, Apr. 1988.
    [14] X. Wu, G. Hua, J. Zhang and Z. Qian, “A new current driven synchronousrectifier for series-parallel resonant (LLC) dc-dc converter,” IEEE Trans. Indust. Electron., vol. 58, no. 1, pp. 289-297, Jan. 2011.
    [15] J. H. Jung and J. G. Kwon, “Theoretical analysis and optimal design of LLC resonant converter,” in Proc. of IEEE APEC, pp. 1-10, Sept. 2007.
    [16] R. Liu and C. Q. Lee, “The LLC-type series resonant converter-variable switching frequency control,” in Proc. of 32nd Midwest Symposium on Circuits and Systems, pp. 509-512, Aug. 1989.
    [17] B. Lu, W. Liu, Y. Liang, F. C. Lee and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” in Proc. of IEEE APEC, pp. 533-538, Mar. 2006.
    [18] R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter power stage,” in Proc. IEEE Power Electronics Specialists Conf., pp. 73-86, 1976.
    [19] P. R. K. Chetty, “Modeling and design of switching regulators,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-18, no. 3, pp. 333-344, 1982.
    [20] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “A simple large-signal nonlinear model for fast simulation of zero-current-switch quasi-resonant converters,” in Proc. IEEE PESC '96 Conf., vol. 2, pp. 1087-1091, 1996.
    [21] H. K. Lam and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET Control Theory Appl., vol. 3, no. 8, pp. 1093-1106, 2009.
    [22] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41-52, 1999.
    [23] W. Yu, and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
    [24] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 53, no. 9, pp. 1649-1661, 2006.
    [25] Y. Gao and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 475-483, 2005.
    [26] F. J. Lin, P. K. Huang, and C. C. Wang, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, 2007.
    [27] I. B. Kucukdemiral and G. Cansever, “Formalization of a noval Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” in Proc. IEEE International Conference Mechatronics, pp. 717-720, 2005.
    [28] D. F. Specht, “Probabilistic neural network,” Neural Netw., vol. 3, no. 1, pp. 190-118, 1990.
    [29] K. Z. Mao, K. -C. Tan, and W. Ser, “Probabilistic neural-network structure determination for pattern classification,” IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1009-1016, 2000.
    [30] J. C. Pidre, C. J. Carrillo, and A. E. F. Lorenzo, “Probabilistic model for mechanical power fluctuations in asynchronous wind parks,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, 2003.
    [31] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power transformer differential protection based on optimal probabilistic neural network,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 102-112, 2010.
    [32] Z. Liu, and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
    [33] H. X. Li, and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 898-908, 2008.
    [34] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF,” IEEE Trans. Indust. Electron., to be published, 2013.
    [35] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Indust. Electron., vol. 54, no. 3, pp. 1528-1536, 2007.
    [36] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proc. IEEE Conf. Fuzzy System, pp. 1496-1502, 2008.
    [37] 李坤源,寬輸入電壓範圍之高效率半橋串聯諧振轉換器研製,碩士論文,國立台灣科技大學電子工程系,2009。
    [38] G. C. Hsieh, C. Y Tsai, and S. H. Hsieh, “Design consideration for LLC series-resonant converter in two-resonant regions,” in Proc. of IEEE Conf., pp. 731-736, Jun. 2007.
    [39] 李英竹,具前端脈波高度調變調控之串聯諧振轉換器設計,碩士論文,國立台北科技大學電機工程系,台北市,2012。
    [40] L. Hang, Z. Lu, and Z. Qian, “Research of digital control strategy for multi-resonant LLC converter,” Industrial Electronics, ISIE 2007. IEEE International Symposium on, pp. 479-484, Jun. 2007.
    [41] J. W. Shin, and B. H. Cho, “Digitally implemented average current-mode control in discontinuous conduction mode PFC rectifier,” IEEE Transactions on power electronics, vol. 27, no. 7, pp. 3363-3373, Jul. 2012.
    [42] F. Z. Chen and D. Maksimovi´c, “Digital control for improved efficiency and reduced harmonic distortion over wide load range in boost PFC rectifiers,” IEEE Transactions on power electronics, vol. 25, no. 10, pp. 2683-2692, Oct. 2010.
    [43] J. M. Alonso, M. S. Perdigao, D. G. Vaquero, A. J. Calleja and E. S. Saraiva,“Analysis, design and experimentation on constant-frequency DC-DC resonant converters with magnetic control,” IEEE Trans. Indust. Electron., vol. 27, no. 3, pp. 1369-1382, Mar. 2012.
    [44] R. Beiranvand, B. Rashidian, M. R. Zolghadri and S. M. H. Alavi, “Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 462-472, Feb. 2011.
    [45] G. C. Hsieh, C. Y. Tsai and W. L. Hsu, “Synchronous rectification LLC series-resonant converter,” in Proc. of 22th Annu. IEEE Appl. Power Electron. Conf. Expos., pp. 1003-1009, Mar. 2007.
    [46] D. Fu, Y. Liu, F. C. Lee and M. Xu, “A novel driving scheme for synchronous rectifier in LLC resonant converter,” in Proc. of IEEE Trans. Power Electronics Conf., vol. 24, no. 5, pp. 1321-1329, May. 2009.
    [47] E. H. Kim and B. H. Kwon, “Zero-voltage- and zero-current-switching full-bridge converter with secondary resonance,” IEEE Trans. Indust. Appl., vol. 57, no. 3, pp. 1017-1025, Mar. 2010.
    [48] B. R. Lin, J. Y. Dong and J. J. Chen, “Analysis and implementation of a ZVS ZCS DC–DC switching converter with voltage step up,” IEEE Trans. Indus. Electron., vol. 58, no. 7, pp. 2962-2971, Jul. 2011.
    [49] B. R. Lin and S. F. Wu, “ZVS resonant converter with series-connected transformers,” IEEE Trans. Indust. Electron., vol. 58, no. 8, pp. 3547-3554, Aug. 2011.
    [50] Y. C. Chen, T. J. Liang, W. J. Tseng, J. Y. Lee and L. S. Yang, “Design and implementation of LLC resonant converter with high efficiency at light load condition,” Power electronics for distributed generation systems, pp. 538-542, Jun. 2010.
    [51] Y. Ye, C. Yan, J. Zeng and J. Ying, “A novel light load solution for LLC series resonant converter,” Telecommunications energy conference, pp. 61-65, Oct. 2007.
    [52] W. Feng, F. C. Lee, P. Mattavelli, D. Huang and C. Prasantanakorn, “LLC resonant converter burst mode control with constant burst time and optimal switching pattern,” IEEE Applied Power Electronics Conference and Exposition, pp. 6-12, Mar. 2011.
    [53] B. Wang, X. Xin, S. Wu, H. Wu and J. Ying, “Analysis and implementation of LLC burst mode for light load efficiency improvement,” IEEE Applied Power Electronics Conference and Exposition, pp. 58-64, Feb. 2009.
    [54] J. Qin, Z. Moussaoui1, J. Liu and G. Miller, “Light load efficiency Enhancement of a LLC resonant converter,” Applied power electronics conference and exposition, pp. 1764-1768, Mar. 2011.
    [55] Y. K. Lo, S. C. Yen, J. Y. Lin, “A high-efficiency AC-to-DC adaptor with a low standby power consumption,” Applied power electronics conference and exposition, pp. 1-4, Jun. 2006.
    [56] B. H. Lee, M. Y. Kim, C. E. Kim, K. B. Park and G. W. Moon, “Analysis of LLC resonant converter considering effects of parasitic components,” Telecommunications energy conference, pp. 126-130, Oct. 2009.
    [57] S. Korotkov, V. Meleshin, R. Miftahutdinov and S. Fraidlin, “Soft-switched asymmetrical half-bridge DC-DC converter: Steady state analysis. An analysis of switching process,” in Proc. of Telescon, pp. 177-184, Apr. 1997.
    [58] TK20A60U Datasheet, TOSHIBA, 2009.
    [59] IRFB3206PbF Datasheet, International Rectifier, 2006.
    [60] M. Chen, D. Xu and M. Matsui, “Study on magnetizing inductance of high frequency transformer in the two transistor forward converter,” in Proc. of Power Conversion Conf., vol 2, pp. 597-602, 2002.
    [61] Texas Instruments Inc., “TMS320F28030/28031/28032/28033/28034/ 28035 piccolo microcontrollers, rev B”, 2009.
    [62] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo enhanced pulse width modulator (ePWM) module, rev C”, 2009.
    [63] Texas Instruments Inc., “TMS320F2803x piccolo system control and interrupts, rev A”, 2009.
    [64] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo analog-to- digital converter (ADC) and comparator, rev B”, 2009.
    [65] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo serial peripheral interface (SPI), rev B”, 2009.
    [66] Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo Serial Communications Interface (SCI), rev. B”, 2009.
    [67] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
    [68] 蔡瀚章,智慧型控制數位化鋰錳電池充電器之研製,碩士論文,國立中央大學電機工程學系,桃園,2011。
    [69] Z. Liu and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
    [70] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-programmable gate array-based functional link radial basis function network control for permanent magnet linear synchronous motor servo drive system,” IET Electr. Power Appl., vol. 4, no. 5, pp. 357-372, 2010.
    [71] Yoo, S.J., Choi, Y.H. and Park, J.B., “Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach,” IEEE Trans. Circuits and Systems, vol. 53, no. 6, pp. 1381-1395, 2006.
    [72] F. J. Lin, M. S. Huang, Y. C. Hung,C. H. Kuan, S. L. Wang, and Y. D. Lee, “Takagi-Sugeno-Kang type probabilistic fuzzy neural network control for grid-connected LiFePO4 battery storage system,” IET Power Electron., to be published, 2013.
    [73] 龍國強,應用電力線通訊於家庭自動化網路之設計與實作,碩士論文,國立成功大學工程科學系,台南,2006。
    [74] NE-4100 Series Datasheet, MOXA, 2012.
    [75] NE-4100 Serial Command Mode User’s Guide, MOXA, 2004.
    [76] D-Link, http://www.dlinktw.com.tw/。
    [77] 維基百科,https://zh.wikipedia.org/wiki/HomePlug。
    [78] Powerline Products Overview, Atheros, 2009.
    [79] 電子工程專輯,http://www.eettaiwan.com/SEARCH/ART/MAC.HTM。
    [80] 維基百科,https://zh.wikipedia.org/wiki/實體層。
    [81] 孕龍科技股份有限公司,http://www.zeroplus.com.tw/software_download/200902ZEROPLUS_MII.pdf。
    [82] CTIMES,http://www.ctimes.com.tw/DispArt-tw.asp?O=HJMC56JE2MKAR-STDU。
    [83] INT6400/INT1400 HomePlug AV Chip Set Datasheet, Atheros, 2009.

    QR CODE
    :::