| 研究生: |
李鴻聰 Hong-Chung Lee |
|---|---|
| 論文名稱: |
最小切割樹群聚演算法極端情形之研究 A Study on Extreme Conditions of Minimum Cut Tree Clustering Algorithm |
| 指導教授: |
何錦文
Chin-Wen Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 政治圖形 、正規圖形 、群聚演算法 、最小切割樹 、極端情形 、邊連通 |
| 外文關鍵詞: | extreme conditions, politician graph, regular graph, clustering, Minimum cut tree, edge-connectivity |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
群聚分析對於分析檢視資料之間的複雜結構是一種非常有效的工具,其應用領域相當廣泛,含蓋了生物資訊、影像處理和商業交易等範圍。群聚分析根據某些法則,比如最短距離或最小切割,來對資料作分群,使得同一群內的元素間關聯性強而群與群之間的關聯弱。
在此篇論文中,我們特別探討由G.W. Flake等人所提出的群聚演算法──最小切割樹演算法,並分析出此演算法對某些圖形無法作分群,亦即分群的結果就只有兩種可能:一群或 群,其中 為圖形的點數。我們得到一滿足此現像的充分必要條件,並且發現某些圖形滿足這個條件。
Clustering algorithms are effective tools for exploring the structure of complex data sets. There are a lot of applications for clustering algorithms, including bioinformatics, image recognition, business transactions, etc.
The minimum cut tree clustering algorithm is using maximum flow techniques to cluster the data (graphs). We prove that two kinds of graph, i.e. graph with edge connectivity and a graph with a vertex connected to every other vertex, are the extreme conditions in the algorithm.
Bibliography
[1] J. W. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2000.
[2] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, 1988.
[3] B. Stein and O. Niggemann, "On the Nature of Structure and its Identification," Springer, pp. 122-134, 1999.
[4] E. Hartuv and R. Shamir, "A Clustering Algorithm based on Graph Connectivity," Information Processing Letters, pp. 175-181, 2000.
[5] An Algorithm for Partitioning the Nodes of a Graph," Journal of Society for Industrial and Applied Mathematics, Vol. 3, No. 4, pp. 541-550, 1982.
[6] B. W. Kernighan and S. Lin, "An Efficient Heuristic Procesure for Partitioning Graphs," The Bell System Technical Journal, pp. 291-307, 1970.
[7] G. W. Flake, K. Tsioutsiouliklis, and R. E. Tarjan, "Graph Clustering Techniques based on Minimum Cut Trees," Technical Report 2002-06, 2002.
[8] Peng, D. R., "Implementation of Visualization System for Proteomics." 2003.
[9] T. C. Hu, Combinatorial Algorithms, Addison-Wesley, 1982.
[10] L. R. Ford and D. R. Fulkerson, "Maximum Flow Through a Network," Canadian Journal of Mathematics, Vol. 8, No. 3, pp. 399-404, 1956.
[11] R. E. Gomory and T. C. Hu, "Multi-terminal network flows," Journal of Society for Industrial and Applied Mathematics, Vol. 35, No. 4, pp. 921-940, 1961.
[12] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, "A Fast Parametric Maximum Flow Algorithm and Applications," Siam Journal of Computing, Vol. 18, No. 1, pp. 30-55, 1989.
[13] L. Sunil Chandran and L. Shanker Ram, "On the Number of Minimum Cuts in a Graph," Springer, 220-229, 2002.
[14] H. L. Fu, K. C. Huang, and C. A. Rodger, "Connectivity of Cages," Journal of Graph Theory, Vol. 24, No. 2, pp. 187-191, 1997.
[15] P. Wang, B. G. Xu, and J. F. Wang, "A note on the edge-connectivity of cages," The Electronics Journal of Combinatorics, Vol. 10, No. 2, 2003.
[16] W. T. Tutte, Graph Theory, Addison-Wesley, 1984.