跳到主要內容

簡易檢索 / 詳目顯示

研究生: 龎百正
Bai-Cheng Pang
論文名稱: 多載量AGV之派車法則與揀取法則的探討
Dispatching and picking up rules of multiple-load AGVs
指導教授: 何應欽
Ying-Chin Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 91
語文別: 中文
論文頁數: 171
中文關鍵詞: 多載量無人搬運車派車法則
外文關鍵詞: multiple-load AGVs, Automated Guided Vehicle Systems (AGVS), dispatching rules
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在整個製造系統中,是否能有效的將物料迅速、適時、適當的搬運到下個目的地對於系統的績效有很大的影響,所以針對不同種類的製造型態來選擇出適當的搬運系統對於成本的降低是很重要的一件事,然而在眾多的搬運系統中又以無人搬運車(Automated Guided Vehicle ; AGV)最具生產力與彈性。
    然而根據以往無人搬運車的文獻大都以單載量無人搬運車為研究基礎,進而發展出不同派車法則、車輛數評估、路徑規劃、防撞問題等,但是基於成本和效率的考量近年來也出現以多載量無人搬運的研究,由於搬運車的載量數提昇,所以在搬運車的派車問題上更為複雜,本研究就是針對多載量無人搬運車發展出一套派運法則以提昇多載量無人搬運車的搬運效率。
    本研究所發展出來的法則主要分成四大部分:
    1.運送派車法則
    運送派車法則是在無人搬運車在有承載工件狀況下,決定出目前無人搬運車上所載的工件中,那一個工件須優先送至下一工作站。
    2.載取派車法則
    載取派車法則是決定目前無人搬運車應優先到那個有需要搬運需求的工作站來揀取工件,本研究利用一些有關單載量AGV文獻中的所發展出來的派車法則運用在多載量無人搬運車的車輛控制進而發展出不同派車法則。
    3.運送或載取作業選擇法則
    當無人搬運車完成裝卸載作業時,由於多載量無人搬運車可以同時運載兩個或兩個以上載量的工件,所以無人搬運車必須依目前之狀況來決定要優先使用載取派車法則來載取工件或是運送派車法則來運送工件,在依不同的法則決定搬運車的下一個目的地。
    4.負載揀取法則
    負載揀取法則是指當AGV根據運送派車法則或是載取派車法則分派到某個工作站後,此AGV在該工作站要進行揀取工件的動作時,AGV會根據揀取法則在該工作站的出料暫存區中選擇出符合法則條件之工件,然後揀取此一工件。
    本研究針對這四個法則與兩種不同載量的AGV互相搭配,再利用模擬程式進行模擬,進而驗證出那些法則在本研究的環境假設下有效好的績效。


    There is a very important issue that is the management of material movement between workstations in any manufacturing facility. One of the main material handing systems is Automated Guided Vehicle Systems (AGVS). Automated Guided Vehicle Systems (AGVS) is a material-handling system in which driverless, battery-powered vehicles are moved by means of an electronic or optical signal from a path which has been installed in the floor.
    To satisfy a high throughput rate in any manufacturing facility, increasing carrying capacity of an AGV is one of the solutions. This thesis focuses on the dispatching and picking up rules of multiple-load AGVs in the manufacturing system.
    In this thesis, simulation was used to construct the multiple-load AGVs system and then we could use statistical software to analyze the simulated outcomes and various performances. Finally, we can test and verify the methodology in this thesis.

    目錄 英文摘要 I 中文摘要 II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究環境與假設 3 1.4 研究方法與論文架構 4 第二章 文獻探討 6 2.1 無人搬運車的派送(DISPATCH)問題 6 2.2 無人搬運車路徑規劃與佈置問題 11 2.3 無人搬運車防撞問題 15 2.4 多載量無人搬運車派車問題 17 第三章 多載量無人搬運車的派車系統設計 20 3.1 問題分析 20 3.2 系統環境 21 3.3 多載量無人搬運車承載作業程序 23 3.4 多載量無人搬運車之車輛控制方法 26 3.4.1 運送派車法則 27 3.4.2 載取派車法則 28 3.4.3 運送或載取作業選擇方式 32 3.4.4 負載揀取法則 34 第四章 模擬實驗設計與分析 39 4.1 實驗環境與假設 39 4.2 決定暖機時間與重覆實驗次數 42 4.3 模擬實驗分析 46 4.4 統計ANOVA分析與實驗結果 49 4.4.1 產出量統計分析 51 4.4.2 平均流程時間統計分析 57 4.4.3 平均在製品量統計分析 64 4.4.4 工件平均待在車上時間的統計分析 71 4.4.5 工件提早完成次數比例的統計分析 78 4.4.6 工件延遲完成次數比例統計分析 85 4.4.7 工件平均提早完成時間統計分析 91 4.4.8 工件平均延遲時間統計分析 97 第五章 結論與建議 104 5.1 結論 104 5.2 後續研究建議 105 附錄A 111 附錄B 148

    參考文獻
    Bartholdi, J. J. and Platzman, L. K., 1989, “Decentralized control of automated guided vehicles on a simple loop,”IIE Transactions, 21(1), 76-81.
    Bilge, U. and Tanchoco, J. M. A., 1997, “AGV systems with muti-load carriers:Basic issues and potential benefits,” Journal of manufacturing systems, 16(3), 159-171.
    Bozer, Y. A. and Srinivasan, M. M., 1989, “Tandem configurations for AGV systems offer simplicity and flexibility,” Material Handling System, 21(2), 23-27.
    Bozer, Y. A. and Srinvasan, M. M., 1992, “Tandem AGV system : a partitioning algorithm and performance comparison with conventional AGV systems,” European Journal of Operational Research, 63(1) , 173-191..
    Egbelu, P. J., 1987, “Pull versus push strategy for automated guided vehicle load movement in a batch manufacturing system,” Journal of Manufacturing Systems, 6(3), 209-221.
    Egbelu, P. J., 1987, “The use of non-simulation approaches in estimating vehicle requirements in an automated guided vehicle base transport System,” Material Flow, 2, 17-32.
    Egbelu, P. J. and Tanchoco, J. M. A., 1984, “Characterization of automatic guided vehicle dispatching rules,”International Journal of Production Research, 22(3), 359-374.
    Egbelu, P. J. and Tanchoco, J. M. A., 1986, “Potentials for bi-directional guide-path for automated guided systems,” International Journal of Production Research, 24(5), 1075-1097.
    Gaskins, R. J., and Tanchoco, J. M. A., 1987, “Flow path design for automated guided vehicle systems,”International Journal of Production Research, 25(5), 667-676.
    Gaskins, R. J., Tanchoco, J. M. A., and Taghoboni, F., 1989, “Virtual flow paths for free-ranging automated guided vehicle system,” International Journal of Production Research, 27(1), 91-100..
    Kaspi, M. and Tanchoco, J. M. A., 1989, “Optimal flow path design of unidirectional AGV systems,” International Journal of Production Research, 28(6), 1023-1030.
    Kim, C. W. and Tanchoco, J. M. A., 1993, “Conflict-free shortest path bi-directional AGV routing,” International Journal of Production Research, 29(12), 2377-2391.
    Kim, C. W. and Tanchoco, J. M. A., 1991, “Conflict-free shortest path bi-directional AGV routing,” International Journal of Production Research, 29(12), 2377-2391.
    Klein, C. M. and Kim, J., 1996, “AGV dispatching”, International Journal of Production Research, 34(1), 95-110.
    Mahadevan, B. and Narendran, T. T., 1990, “Design of automated guided vehicle-based material handling system for a flexible manufacturing system,”International Journal of Production Research, 28(9), 1611-1622
    Maxwell, W. L. and Muckstadt, J. A., 1982, “Design of automatic guided vehicle systems,” IIE Transaction, 14(2), 114-124.
    Nayyar., P. and Khator, S. K., 1993, “Operational Control of multi-load vehicles in an automated guided vehicle system”. Computers and Industrial Engineering, 25(1-4), 503-506.
    Newton, D., 1985, “Simulation model calculates how many automated guided vehicle are needed,”Industrial Engineering, 8(2), 68-77.
    Occena, L. G. and Yokota, T., 1991, “Modeling of an automated guided vehicle system (AGVs) in a just-in-time (JIT) environment,” International Journal of Production Research, 29(3), 495-511.
    Rajotia, S., Shanker, K., and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, 36(5), 1177-1198.
    Sinriech, D., and Tanchoco, J. M. A., 1991, “Intersection graph method for AGV flow path design,” International Journal of Production Research, 29(9), 1725-1732.
    Sinriech, D., and Tanchoco, J. M. A., 1992, “An economic model for determining AGV fleet size,” International Journal of Production Research, 30(6), 1255-1268.
    Sinriech, D. and Tanchoco, J. M. A., 1995, “An introduction to the segmented flow approach for discrete material flow systems,” International Journal of Production Research, 33(12), 3381-3410.
    Sinriech, D. Tanchoco, J. M. A., and Herer, Y. T., 1996, “The segmented bi-directional single-loop topology for material flow systems,” IIE Transactions, 28(1), 40-54.
    Tanchoco, J. M. A. and Sinriech, D., 1991, “OSL-optimal single loop guided paths for AGVs,” International Journal of Production Research, 30(3), 665-681.
    Tanchoco, J. M. A., and Co, C. G., 1994, “Real-time control strategies for multiple-load AGVs,” Material Flow Systems in Manufacturing, edit by Tanchoco, J. M. A. (Chapman & Hall), pp. 300-331.
    Wysk, R. A. and Egbelu, P. J., 1987, “Use of spread sheet analysis for evaluation AGV systems, ” Material Flow, 4, 53-64.
    Yim. D., and Linn. R. J., 1993, “Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system”. International Journal of Production Research, 31(1), 43-57.
    黎士賢,1998,『網路式移動區域控制無人搬運車系統』,國立中央大學工業管理研究所碩士論文。
    劉嘉文,1999,『考慮加工設備阻塞及飢渴現象並具途程串接優化的AGV派車法』,國立台灣大學工業工程研究所碩士論文。
    廖韋昌,2002,『模糊投標式多載量AGV之控制方法』,國立中央大學工業管理研究所碩士論文。
    陳永昇,2002,『多載量無人搬車派送法則的研究』,國立中央大學工業管理研究所碩士論文。

    QR CODE
    :::