| 研究生: |
郭文堯 Wen-Yao Kuo |
|---|---|
| 論文名稱: |
稻殼灰分擔載銅觸媒之製備與應用研究 Dehydrogenation of Etahnol over Copper Catalysts Supported on Rice Husk Ash |
| 指導教授: |
張奉文
Feg-Wen Chang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 稻殼灰分 、擔載銅觸媒 、乙醇脫氫 |
| 外文關鍵詞: | ethanol dehydrogenation, rice husk ash, supported copper catalyst |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由廢棄稻殼製成稻殼灰分(RHA),作為各種材料用途,近年來廣受矚目。本研究利用RHA作為擔體材料,以含浸法分別製備Cu/RHA與Cu/Cr/RHA兩種擔載銅觸媒,論文內容就以這兩個部分為主軸,探究銅金屬載量、煅燒溫度、氧化鉻促進劑等項因素對於觸媒表面特性與催化活性的影響。有關表面特性分析方面,採用氮吸附法(N2 sorption)、感應偶合電漿原子發射光譜儀(ICP-AES)、掃描式電子顯微鏡(SEM)、X-射線繞射儀(XRD)、熱重分析(TGA)、程溫還原(TPR)、N2O分解吸附(dissociative adsorption of nitrous oxide)等項目; 至於催化活性方面,則是利用乙醇在常壓下進行脫氫反應,加以分析比較。
含浸法製備Cu/RHA觸媒的實驗結果顯示:經XRD圖譜與SEM影像的比對,證實較高銅金屬載量會引發銅金屬顆粒的聚集。經過煅燒的Cu/RHA前驅物,其TPR圖譜顯示氧化態的銅顆粒之中,CuO與Cu2+乃是同時存在的,其中Cu2+ 較CuO具備較強的「金屬-擔體效應」 (MSI)。銅金屬載量與脫氫反應的轉化率以及TOF似乎關聯性不大。隨著反應溫度的升高,乙醇脫氫反應的轉化率亦隨之提昇。此外,由乙醇脫氫反應的結果證實,擔載於稻殼灰分銅觸媒(Cu/RHA)的催化活性高於擔載於二氧化矽者(Cu/SiO2)。製備Cu/RHA觸媒的理想煅燒溫度大約723 K 左右,此一條件所製得的觸媒同時具備較高催化活性與較低活性衰退速率。
含浸法製備Cu/Cr/RHA觸媒實驗結果顯示:隨著氧化鉻促進劑添加量增加至2 wt%為止,銅金屬的分散度亦隨之增加,並達到極大值; 但當氧化鉻添加量超過2 wt%時,銅金屬的分散度又逐漸隨著添加量而遞減。此外,2 wt%左右的氧化鉻添加量,不僅增進銅觸媒的催化活性,並可抑制觸媒活性衰退速率。銅觸媒的衰退主要由於銅金屬燒結所導致。RHA擔體的BET表面積雖然遠低於一般商用SiO2擔體,然而,RHA擔體表面孔洞大多屬於單一孔洞,而SiO2擔體表面大多屬於內部聯結的孔洞型態,相較之下,後者較易於製備過程中造成銅金屬顆粒阻塞孔洞,使得金屬分散度大幅降低。是故,RHA擔體優於一般商用SiO2擔體,更適合於擔載型銅觸媒的製造。
Rice husk ash-supported copper catalysts including both unpromoted (Cu/RHA) and Cr2O3 - promoted (Cu/Cr/RHA) ones, which were prepared by incipient wetness impregnation, have been investigated in two parts of this dissertation, respectively. Surface characterization by XRD(X-ray diffraction), TGA (thermogravimetric analysis), TPR (temperature-programmed reduction), SEM(scanning electronic microscopy), and H2-N2O titration, and catalytic activity by ethanol dehydrogenation have been examined extensively.
The results derived from each part will be described as follows:
1. For the preparation of Cu/RHA catalysts: TGA results reveal that both the unsupported and RHA-supported precursors having been derived from copper nitrate trihydrate are completely converted to cupric oxide above ca. 600 K. The XRD patterns and SEM images show that higher copper loading leads to the agglomeration of CuO crystallites. The TPR profiles denote the probable existence of both CuO and Cu2+ in the calcined copper catalysts. CuO exhibits weak metal-support interaction (MSI) while Cu2+ in much lower content exhibits strong MSI. Ethanol conversion and turnover frequency (TOF) show little dependence on copper loading. Ethanol conversion increases with an increase in reaction temperature. Furthermore, copper catalysts supported on rice husk ash display higher catalytic activity than those supported on silica gel, as revealed by the test of ethanol dehydrogenation. Calcination temperature around 723 K, giving a high initial activity and a low deactivation rate, seems to be an optimal condition for manufacturing Cu/RHA catalyst precursors in this work.
2. For the preparation of Cu/Cr/RHA catalysts: Copper dispersion can be enhanced by the initial increase in Cr2O3 promoter content up to 2 wt%, while it then deteriorates gradually upon further increase in promoter content. It has been suggested that an optimal Cr content around 2 wt% not only enhances catalytic activity but also retards catalyst deactivation. Generally speaking, catalyst deactivation results predominantly from copper sintering. Despite of the lower BET surface area, RHA is superior to commercial silica gel as a candidate for catalyst support in this work, because the surface of the former may possess more unique pores, while the majority of surface pores on the latter are interconnected and clogged easily.
參考文獻
Amick, J. A. ,“Purification of Rice Hulls As a Source of Solar Grade Silicon for Solar-Cells” , J. Electrochem. Soc., 129, 864 (1982).
Anderson, J.R., “Structure of Metallic Catalysts”, Academic, New York, (1975).
Ball P.C., R.Evans, Langmui, 5 , 714 (1989).
Boar, P. L. and L. K. Ingram , “The Comprehensive Analysis of Coal Ash and Silicate Rocks by Atomic-Absorption Spectrophotometry by a Fusion Technique” , Analyst., 95 ,124 (1970).
Bond, G. C., and S. N. Namijo, “An Improved Procedure for Estimating the Metal Surface Area of Supported Copper Catalysts” , J. Catal., 118, 507 (1989).
Bond, G. C., S. N. Namijo, and J. S. Wakeman, “Thermal Analysis of Catalyst Precursors Part 2. Influence of Support and Metal Precursors on the Reducibility of Copper Catalysts” , J. Mol. Catal., 64, 305 (1991).
Burton, R. S. , R. C. Richard, and S. Alpert, “Municipal Solid Waste Prolysis” , AIChE System, 70 (1974) 116.
Carter, J. L., J. A. Cusumano, and J. H. Sinfelt, J. Phy. Chem., 70, 2257 (1966).
Chakraverty, A., P. Mishra, and H. D. Banerjee, “Investigation of Thermal Decomposition of Rice Husk” , Thermochimica Acta, 94, 267 (1985).
Chakraverty, A., P. Mishra, and H. D. Banerjee, “Investigation of Production of Pure Amorphous White Silica” , J. Master. Sci., 23, 21 (1988).
Chakraverty A. and S. Kaleemullah, “Conversion of Rice Husk into Amorphous Silica and Combustible Gas” Energy Comers Mgmi 32, 565 (1991).
Chang, F. W. , T. J. Hsiao, S. W. Chang, and J. J. Lo, “Nickel Supported on Rice Husk Ash-Activity and Selectivity in CO2 Methanation” , Appl. Catal. A, 164, 225 (1997).
Chang, F. W. , T. J. Hsiao, and J. D. Shih, “Hydrogenation of CO2 over a Rice Husk Ash Supported Nickel Catalyst by Deposition- Precipitation” , Ind. Eng. Chem. Res., 37 , 3838 (1998).
Chang, F. W., M. T. Tsay, and S. P. Liang, “Hydrogenation of CO2 over Nickel Catalysts Supported on Rice Husk Ash Prepared by Ion Exchange” , Appl. Catal. A, 209, 217 (2001).
Chang, F. W., M. T. Tsay, M. S. Kuo and C. M. Yang, “Characterization of Nickel Catalysts on RHA-Al2O3 Composite Oxides Prepared by Ion Exchange” , Appl. Catal. A, 226, 213 (2002a).
Chang, F. W., M. T. Tsay, and M. S. Kuo, “Effect of Thermal Treatments on Catalyst Reducibility and Activity in Nickel Supported on RHA-Al2O3 Systems” ,Thermochim. Acta, 386, 161 (2002b).
Chang, F. W., W.Y. Kuo and K.C.Lee, “Dehydrogenation of Ethanol over Copper Catalysts on Rice Husk Ash by Incipient Wetness Impregnation” , Appl. Catal. A, 246, 253 (2003).
Chang, F. W., W.Y. Kuo and H.C.Yang, “Preparation of Cr2O3 – Promoted Copper Catalysts on Rice Husk Ash by Incipient Wetness Impregnation” , Appl. Catal. A, (in press, 2005).
Chen, H.W. and J.H.Lin, J.Phys.Chem. 96, 10353 (1992).
Chen, H. W., J. M. White, and J. G. Ekerdt, “Electronic Effect of Supports on Copper Catalysts” , J. Catal., 99, 293 (1986).
Chen, J. M. and F. W. Chang, “Rice Husk as a Source of High Purity Carbon/Silica to Producing Silicon Tetrachloride”, Proc. Natl. Sci. Counc., 15, 412 (1991a).
Chen, J. M. and F. W. Chang, “The Chlorination Kinetics of Rice Husk”, Ind. Eng. Chem. Res., 30, 2214 (1991b).
Evans, J. W., M. S. Winwright, A. J. Bridgewater, and D. J. Young, “On the Determination of Copper Surface Area by Reaction with Nitrous Oxide” , Appl. Catal., 7, 75 (1983).
Fogler, H.SElements of Chemical Reaction Engineering, Prentice-Hall, New Jersey, (1991).
Franckerts, J., and G. F. Froment, “Kinetic Study of the Dehydrogenation of Ethanol” , Chem. Eng. Sci., 19, 807 (1964).
Giamello, E., B. Fubini, P. Lauro, and A. Bossi, J. Catal., 18, 108 (1970).
Gil. A., A. Diaz., L. M. Gandia, and M. Montes, “Influence of the Preparation Method and the Nature of the Support on the Stability of Nickel Catalysts” , Appl. Catal. A, 109, 167 (1994).
Guerreiro,ED, O.F. Gorriz, G. Larsen and L.A. Arrua, “Cu/SiO2 Catalysts for Methanol to Methyl Formate Dehydrogenation: A Comparative Study Using Different Preparation Techniques ” Appl. Catal.A, 204, 33 (2000).
Hamad M.A. and Khttab, “Thermal Charactesitic of Rice Hulls” Thermochimica Acta, 48, 343 (1981).
Hindustan Lever Ltd. , Indian Patent , No.147090 (1979).
Houston, D. F. , “Rice Hulls” , Rice Chemistry and technology , Chapter 12 , Houston, D. F., Eds., American of Association of Cereal Chemistry, St. Paul. Minnessota (1972).
Ibrahim, D. M. and S. A. EL-Hemaly, “Thermal Treatment of Rice-Husk Ash : Effect of Time Firing on Pore Structure and Crystallite Size” , Thermochimica Acta, 37, 347 (1980).
Ihsan Barin, “Thermochemical Data of Pure Substance”, 3rd Edition, Weinheim, Die Bundersrepublik Deutschland (Federal Republic of Germany) , ISBN 3-527-287450-0, (1995).
Jackson, S. D., F. J. Robertson, and J. Willis, “A Study of Copper/silica Catalysts: Reduction, Adsorption and Reaction” , J. Mol. Catal., 63, 255 (1990).
Klbag, S. S. , P. K. Basu, and N. V. Bringi, Indian Patent , No.146570 (1979).
Krishnarao R.V. and M.M. Godkhindi, “Distribution of Silica in Rice Husks and Its Effect on the Formation of Silicon Carbide”. Ceramics international, 18, 243 (1992).
Lanning F.C., “Silicon in rice.” Agricultural and Food Chemistry, 11, 435 (1963).
Liou, T. H. and F. W. Chang, “The Nitridation Kinetics of Pyrolyzed Rice Husk” , Ind. Eng. Chem. Res., 35, 3375 (1996).
Liou, T. H., F. W. Chang, and J. J. Lo, “Pyrolysis Kinetics of Acid-Leached Rice Husk” , Ind. Eng. Chem. Res. , 36, 568 (1997).
Longgaback, J. R. and F. Banner, Industrial and Laboratory Pyrolyusis, Chap. 27, 476 (1976).
Marchi, A. J., J. L. G. Fierro, J. Santamaría, and A. Monzón, “Dehydrogenation of Isopropylic Alcohol on Cu/SiO2 Catalyst: a Study of the Activity Evolution and Reactivation of the Catalyst” , Appl. Catal. A, 142, 375 (1996).
Marino, F.J., E.G. Cerrella, S.Duhalde, M.Jobbagy, and M.A. Laborde, Int. J. Hydrogen Energy 23 (1998) , 1095.
McCaffrey, E.F., T.A. Micka, R.A.Ross, J.Phys.Chem. 76, 3372 (1972).
Mile, B. D. Stirling, M. A. Zammitt, A. Lovell, and M. Webb,”The Location of Nickel Oxide and Nickel in Silica-supported Catalysts:Two Forms of “NiO” and the assignment of Temperature Programmed Reduction Profiles” , J. Catal., 114, 217 (1988).
Nizami MS, K. Hussain, M.K. Farooq and M.Z. Iqbal, “Pyrolytic preparation of amorphous silica from rice husk “, Pak. J. Sci. Ind. Res. Vol. 36 No. 11, 462 (1993) .
Patel, M. , A. Karera, and P. Prasanna, “Effect of Thermal and Chemical Treatment on Carbon and Silica Contents in Rice Husk” , J. Master. Sci., 20, 4387 (1987).
Peloso, A., M. Moresi, C. Mustachi, B. Soracco, Can.J.Chem.Eng. 57, 159 (1979).
Richardson, J. T. and R. J. Dubus, ”Crystallite Size Distributions of Sintered Nickel Catalysts” , J. Catal., 57, 417 (1979).
Prasad, Y.S., B.D. Padalia, and S.K. Raman, “Role of Chromia in Copper Catalyst for Dehydrogenation of Ethanol ”,J.Chem.Technol.Biotechnol., 35A, 15(1985).
Rao, V.M, V.Shankar, “High Activity Copper Catalysts for One-Step Conversion of Methanol”,,J.Chem.Technol.Biotechnol., 42, 183(1988).
Riverors H. and C. Garz, “Rice husks as a source of high purity silica”. J Master Sci 22, 4665 (1987).
Satterfield, CN, ”Heteroheneous Catalysis in Practice”, 2nd ed.,McGraw-Hill, New York (1991).
Sengupta, G., D. K. Gupta, M. L. Kundu, and S. P. Sen, J. Catal., 67, 223 (1983).
Shiau.,C.Y. and J.C.Tsau, J.Chem. Technol. Biotechnol. 73, 414 (1998).
Takezawa, N., H. Kobayashi, Y. Kamegai, and M. Shimokawabe, “Characterization of Copper/Silica Catalysts in Reduced States” , Appl. Catal., 3, 381 (1982).
Takezawa, N., and N. Kobayashi, Y. Kamegai, and M. Shimokawabe, “Characterization of Copper/Silica Catalysts in Reduced States” , Appl. Catal., 3, 381 (1982).
Thomas R.S., P.K. Basu and F.T. Jones, “Silicon tetrachloride synthesis from rice hulls : Transmission and scanning electron microscope study”, Proc Electron Microsc Soc Amer 30, 236 (1972).
Toupance, T., M. Kermarec, and C. Louis, “Metal Particles Size in Silica-Supported Copper Catalysts. Influence Condition of Preperation and of Thermal Pretreatments”,J. Phys. Chem.B, 104, 965(2000)
Tsay, M.T. and F.W. Chang, “Characterization of Rice Husk Ash-Supported Nickel Catalysts Prepared by Ion Exchange” , Appl. Catal. A, 203, 15 (2000).
Tsay, M. T. and F. W. Chang, “Characterization and Reactivity of RHA-Al2O3 Composite Oxides Supported Nickel Catalysts” , Catal. Commun., 2, 233 (2001).
Tu, Y. J., Y. W. Chen, and C. Li, “Characterization of Unsupported Copper-Chromium Catalysts for Ethanol Dehydrogenation”, J. Mol. Catal., 89, 179 (1994).
van den Oetelaar, L. C. A., A. Partridge, P. J. A. Stapel, C. F. J. Flipse, and H. H. Brongersma, “A Surface Science Study of Model Catalysts. 1. Quantitative Surface Analysis of Wet-Chemically Prepared Cu/SiO2 Model Catalysts” , J. Phys. Chem. B, 102, 9532 (1998).
van der Grift, C. J. G., A. Mulder and J. W. Geus, “Characterization of Silica-Supported Copper Catalysts by Means of Temperature- Programmed Reduction”, Appl. Catal., 60, 181 (1990).
van der Grift, C. J. G., A. F. H. Wielers, B. P. J. Joghi, J. Van Beijnum, M. de Boer, M. Versluijs-Helder, and J. W. Geus, “Effect of the Reduction Treatment on the Structure and Reactivity of Silica-Supported Copper Particles” , J. Catal., 131, 178 (1991).
Wicke, E.,Chem.Ing.Tech. 29, 305 (1957)
Yoshida, S. Y. Onishi, and K. Kitagishi, “Chemical Forms, Mobility and Depostion of Silicon in Rice Plant”, Soil Science and Plant Nutrition, 8, 15 (1962).
Yoshida SY, Onishi and Kitagishi K, The Chemical nature of silicon in rice plant. Soil and Plent Food, 5, 23 (1959).
Zhou, R.X. T.M.Yu, X.Y.Jiang, F.Chen, and X.M.Zheng, Appl. Surf. Sci. 148, 263 (1999).
王澄霞,普通化學,三民書局,台北市,(1993).
吳榮宗, “工業觸媒概論” 增訂版, 興國出版社 (1980).
李秉傑, 邱宏明, 王亦凱, 合譯 “非均勻系催化原理與應用” , 渤海堂文化事業有限公司 (1993).
林文雄, 鄒岳樺, 張新福, “無電鍍銅觸媒之銅表面積及對醇類之脫氫反應之影響” , 技術學刊, 12, 463 (1997).
姚品全, “淺談銅觸媒” , 觸媒與製程, 8, 47 (2000).
李昆展, “以稻殼灰分初濕含浸製備擔體銅觸媒之研究” , 國立中央大學化學工程研究所碩士論文 (2001).
謝銘仲, “以稻殼灰分沉澱固著製備擔體銅觸媒特性之研究” , 國立中央大學化學工程研究所碩士論文 (2002).
黃士益, “以稻殼灰分沈澱固著製備擔體銅觸媒之反應性研究” , 國立中央大學化學工程研究所碩士論文 (2003).
張天鴻,“廢物利用將稻殼轉化為高蛋白飼料”,食品工業(1978).
陳茂墻,陳吉斌,“稻殼飼料化試驗-氨化”,畜產研究(1978).
孫金星,周齊生,“利用稻殼熱解後所產生之活性碳對原子爐洗滌廢水中清潔劑吸收之研究”,放射性待處理物料管理處,(1983).
林福星,“稻殼的熱裂解-氣化與水蒸汽重組反應之研究”,國立台灣大學碩士論文(1987).
黃錦河,張武男,林深林,“數種木士化介質之物理性與化學性分析”,興大園藝 (1993).
黃豐智, ”氧化矽載體無電鍍鎳觸媒之研究”, 私立逢甲大學化學工程研究所碩士論文 (1994).
郭茂穗,“以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究”,國立中央大學博士論文 (2003)