| 研究生: |
鍾明修 Ming-Hsin Chung |
|---|---|
| 論文名稱: |
雙塔式變壓吸附法濃縮二氧化硫之模擬 |
| 指導教授: |
周正堂
Cheng-tung Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 回收 、二氧化硫 、酸雨現象 、真空變壓吸附 、模擬 |
| 外文關鍵詞: | recovery, SO2, acid-rain phenomena, vacuum swing adsorption, Asimulation |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動力工廠燃燒所產生的二氧化硫是造成酸雨現象的主因。如要回收二氧化硫,一般的處理方法乃利用溶劑回收,但是有二次污染的問題。但如果使用變壓吸附法回收煙道氣中的二氧化硫,則不會有此問題,所以近年來這方面的研究逐漸受到重視。
本研究是由模擬方式進行兩種真空變壓吸附程序的探討。進料為0.5﹪SO2,18﹪CO2,其餘為N2的混合氣體,吸附劑採用XAD-16(NO-treated)。模擬時採用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式。因吸附劑顆粒大,故忽略吸附塔內壓力降。
模擬程式採用線方法,加上可調的節點,將偏微分方程組轉換成常微分方程組。用差分法估計微分值,塔內各點的流速則使用三次多項式估算。最後用ODEPACK軟體中的LSODE對時間積分求得聯立方程式的解。
以此模擬程式探討不同參數對產物濃度與回收率的影響,期能藉此程序的探討,提供實驗程序上的考量。
The emission of SO2 from power plants that burn fossil flues is the major cause for acid-rain phenomena. So far,the removal of SO2 is mainly achieved by gas absorption,employing carbonates or alkano- lamines as the absorbent,which generates waste-solution pollution. Since PSA processes don’t generate secondary pollution problem,it can concentrate and recover SO2 from flue gas and has gained wide attention of researchers recently.
Two vacuum swing adsorption(VSA)processes for SO2 recovery with XAD-16(NO-treared)as adsorbent are chosen in this study. The feed gas consists of 0.5﹪SO2 ,18﹪CO2 and the rest N2.Equilibrium model with no bed pressure drop,and instantaneous equilibrium between the solid and gas phases are assumed in simulation. Noisothermal operation is considered.
Method of lines with adaptive grid points is utilized in simulation. The estimation of the spatial derivatives uses upwind difference to reduce the PDEs into ODEs, and it uses cubic spline approximation to estimate flow rate in the adsorptive bed. Finally, the integration with respect to time utilizes program LSODE of ODEPACK.
The influence of operation parameters has been studied for the concentration and recovery of product by the simulation program. It is expected to help creating future experimental system by using the two processes.
1.Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, pp.503, Wiley, New York(1960).
2.Chue, K.T., J.N. Yoo, S.H. Cho, and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995).
3.Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89(1994).
4.Diagne D., M. Goto and T. Hirose, “Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections ”, Ind. Eng. Chem. Res., 34, 3083-3089(1995).
5.Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
6.Doong, S.J., and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
7.Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).
8.Farooq, S., and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).
9.Hassan, M. M., D. M. Ruthven, and N. S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
10.Hassan, M. M., N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
11.Hwang, K.S. and W.K. Lee, “The adsorption and Desorption Breakthrough Behavier of Carbon Monoxide and Carbon Dioxide on Activated.Effect of Total Pressure and Pressure-Dependent Mass Transfer Coefficients”, Separation Science and Technology, 29(14),1857-1891(1994).
12.Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299(1992a).
13.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”,Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84(1992b).
14.Kikkinides, E.S., and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
15.Kikkinides, E.S., and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers” ,Ind. Eng. Chem. Res., 32(10), 2365-2372(1993).
16.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
17.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
18.McCabe, W.L., J.C. smith, P. Harriott, Unit operations of Chemical Engineering, p.325, pp.406-408, Fourth Edition, McGraw-Hill, Inc.(1985)
19.Nakao, S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114(1983).
20.Pugsley T.S., F. Berruti and A, Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481(1994).
21.Saji-A, Y.Takamura, H.Noda, “Application of PSA to Separation of Carbon-Dioxide from Flue-Gas”, KAGAKU KOGAKU RONBUNSHU 1997, Vol 23, Iss 2, pp 149-156.
22.Shin, H.S., and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
23.Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci.,72,751(1959).
24.Smith, J.M. and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company,(1987)
25.Guerin P. de Montgareuil and D. Domine, U.S. Patent 3,155,468, to Societe L‘ Air Liquide, Paris(1964).
26.Kowler, D.E. and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AICHE. J., 18, 1027 (1972).
27.Raghavan N. S. and D. M. Ruthven, M. M. Hassan, “Adsorption and Diffusion of Nitrogen and Oxygen in a Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1325 (1986).
28.Rubel-AM and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. pp 521-526. FUEL 1997.
29.Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan(1974).
30.Turnock, P. H., and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
31.Welty, J.R.,C.R. Wicks, R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (June 1983).
32.Yang, R.T. and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AICHE J., 31, 1829 (1985).
33.Yang, R. T., and S. J. Doong, Gas Separation by Adsorption Processes, p. 127, p. 203, p. 255, p.256, p. 261, Butterworth, Boston (1987).
34.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
35.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).