跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾明修
Ming-Hsin Chung
論文名稱: 雙塔式變壓吸附法濃縮二氧化硫之模擬
指導教授: 周正堂
Cheng-tung Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 81
中文關鍵詞: 回收二氧化硫酸雨現象真空變壓吸附模擬
外文關鍵詞: recovery, SO2, acid-rain phenomena, vacuum swing adsorption, Asimulation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動力工廠燃燒所產生的二氧化硫是造成酸雨現象的主因。如要回收二氧化硫,一般的處理方法乃利用溶劑回收,但是有二次污染的問題。但如果使用變壓吸附法回收煙道氣中的二氧化硫,則不會有此問題,所以近年來這方面的研究逐漸受到重視。
    本研究是由模擬方式進行兩種真空變壓吸附程序的探討。進料為0.5﹪SO2,18﹪CO2,其餘為N2的混合氣體,吸附劑採用XAD-16(NO-treated)。模擬時採用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式。因吸附劑顆粒大,故忽略吸附塔內壓力降。
    模擬程式採用線方法,加上可調的節點,將偏微分方程組轉換成常微分方程組。用差分法估計微分值,塔內各點的流速則使用三次多項式估算。最後用ODEPACK軟體中的LSODE對時間積分求得聯立方程式的解。
    以此模擬程式探討不同參數對產物濃度與回收率的影響,期能藉此程序的探討,提供實驗程序上的考量。


    The emission of SO2 from power plants that burn fossil flues is the major cause for acid-rain phenomena. So far,the removal of SO2 is mainly achieved by gas absorption,employing carbonates or alkano- lamines as the absorbent,which generates waste-solution pollution. Since PSA processes don’t generate secondary pollution problem,it can concentrate and recover SO2 from flue gas and has gained wide attention of researchers recently.
    Two vacuum swing adsorption(VSA)processes for SO2 recovery with XAD-16(NO-treared)as adsorbent are chosen in this study. The feed gas consists of 0.5﹪SO2 ,18﹪CO2 and the rest N2.Equilibrium model with no bed pressure drop,and instantaneous equilibrium between the solid and gas phases are assumed in simulation. Noisothermal operation is considered.
    Method of lines with adaptive grid points is utilized in simulation. The estimation of the spatial derivatives uses upwind difference to reduce the PDEs into ODEs, and it uses cubic spline approximation to estimate flow rate in the adsorptive bed. Finally, the integration with respect to time utilizes program LSODE of ODEPACK.
    The influence of operation parameters has been studied for the concentration and recovery of product by the simulation program. It is expected to help creating future experimental system by using the two processes.

    目 錄 目錄Ⅰ 表目錄Ⅳ 圖目錄Ⅴ 摘要Ⅰ 第一章 緒論1 第二章 簡介及文獻回顧3 2.1 變壓吸附之簡介3 2.1.1 PSA製程的基本原理3 2.1.2 吸附劑的選擇4 2.1.3 基本操作步驟5 2.2 文獻回顧7 2.2.1 PSA製程之發展與改進7 2.2.2 理論之回顧8 2.2.3 PSA製程在回收煙道氣中污染物的應用10 第三章 數值理論13 3.1 基本假設13 3.2 統制方程式14 3.3 吸附平衡方程式19 3.4 起始條件與邊界條件26 3.5 求解的方法27 第四章 製程描述31 4.1 第一程序製程33 4.2 第二程序製程35 第五章 結果與討論37 5.1 常數與操作條件37 5.2四步驟製程不同沖洗壓力下沖洗進料比(P/F)的影響 41 5.3四步驟製程進料加壓時間或真空排氣時間的影響48 5.3.1對四步驟製程的影響48 5.4四步驟製程高壓吸附或沖洗步驟時間的影響53 5.5四步驟製程進料加壓壓力的影響56 5.6六步驟製程同向減壓壓力的影響60 5.7六步驟製程同向減壓時間的影響65 5.8六步驟製程進料加壓壓力的影響68 5.9結論72 第六章 未來研究方向 73 符號說明75 參考文獻77 附錄A 流速之估算方法82 附錄B 各數據點的詳細資料86 表目錄 表5.1吸附塔及吸附劑特性暨氣體熱容量計算式常數40 表5.2 1993年文獻模擬成果41 表5.3A本論文模擬1993年文獻在相同條件下的成果41 表5.3B本論文模擬1993年文獻在相同條件下的成果41 表5.4沖洗壓力0.04壓力下SO2濃度回收率值43 表5.5沖洗壓力0.05壓力下SO2濃度回收率值43 表5.6真空排氣時間對SO2濃度及回收率的影響49 表5.7不同真空排氣時間吸附塔內的壓力值49 表5.8改變吸附時間或沖洗時間之模擬結果53 表5.9四步驟程序改變進料壓力模擬之結果56 表5.10六步驟製程改變同向減壓壓力之模擬結果60 表5.11改變同向減壓時間之模擬結果65 表5.12同向減壓時間與真空馬達抽至壓力表65 表5.13六步驟程序改變進料壓力模擬之結果68 圖目錄 圖3.1 電腦程式之求解流程圖30 圖4.1 SO2和CO2在吸附劑XAD-16(NO-TREATED)上的吸附曲線32 圖4.2第一程序循環步驟圖34 圖4.3第二程序循環步驟圖36 圖5.2-1沖洗進料比(PL=0.03ATM)對濃度及回收率之影響45 圖5.2-2沖洗進料比(PL=0.04ATM)對濃度及回收率之影響46 圖5.2-3沖洗進料比(PL=0.05ATM)對濃度及回收率之影響47 圖5.3-1四步驟製程改變進料加壓(真空排氣)時間的濃度回收率圖50 圖5.3-2一循環時間內壓力濃度變化圖(進料加壓時間20秒)51 圖5.3-3一循環時間內壓力濃度變化圖(進料加壓時間30秒)52 圖5.4-1四步驟製程改變高壓吸附或沖洗步驟時間的濃度回收率圖54 圖5.4-2一循環時間內壓力濃度變化圖(逆向沖洗時間300秒)55 圖5.5-1四步驟製程改變進料加壓壓力的濃度回收率圖58 圖5.5-2一循環時間內壓力濃度變化圖(進料壓力PH=2.4ATM)59 圖5.6-1六步驟製程改變同向減壓壓力的SO2濃度回收率圖62 圖5.6-2一循環時間內壓力濃度變化圖(同向減壓壓力0.08ATM)63 圖5.6-3一循環時間內壓力濃度變化圖(同向減壓壓力0.05ATM)64 圖5.7-1六步驟製程改變同向減壓時間的SO2濃度回收率圖67 圖5.8-1六步驟製程改變進料加壓壓力的SO2濃度回收率圖70 圖5.8-2一循環時間內壓力濃度變化圖(進料壓力PH =2.4ATM)71

    1.Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, pp.503, Wiley, New York(1960).
    2.Chue, K.T., J.N. Yoo, S.H. Cho, and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995).
    3.Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89(1994).
    4.Diagne D., M. Goto and T. Hirose, “Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections ”, Ind. Eng. Chem. Res., 34, 3083-3089(1995).
    5.Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
    6.Doong, S.J., and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
    7.Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).
    8.Farooq, S., and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).
    9.Hassan, M. M., D. M. Ruthven, and N. S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
    10.Hassan, M. M., N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
    11.Hwang, K.S. and W.K. Lee, “The adsorption and Desorption Breakthrough Behavier of Carbon Monoxide and Carbon Dioxide on Activated.Effect of Total Pressure and Pressure-Dependent Mass Transfer Coefficients”, Separation Science and Technology, 29(14),1857-1891(1994).
    12.Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299(1992a).
    13.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”,Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84(1992b).
    14.Kikkinides, E.S., and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
    15.Kikkinides, E.S., and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers” ,Ind. Eng. Chem. Res., 32(10), 2365-2372(1993).
    16.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
    17.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
    18.McCabe, W.L., J.C. smith, P. Harriott, Unit operations of Chemical Engineering, p.325, pp.406-408, Fourth Edition, McGraw-Hill, Inc.(1985)
    19.Nakao, S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114(1983).
    20.Pugsley T.S., F. Berruti and A, Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481(1994).
    21.Saji-A, Y.Takamura, H.Noda, “Application of PSA to Separation of Carbon-Dioxide from Flue-Gas”, KAGAKU KOGAKU RONBUNSHU 1997, Vol 23, Iss 2, pp 149-156.
    22.Shin, H.S., and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
    23.Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci.,72,751(1959).
    24.Smith, J.M. and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company,(1987)
    25.Guerin P. de Montgareuil and D. Domine, U.S. Patent 3,155,468, to Societe L‘ Air Liquide, Paris(1964).
    26.Kowler, D.E. and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AICHE. J., 18, 1027 (1972).
    27.Raghavan N. S. and D. M. Ruthven, M. M. Hassan, “Adsorption and Diffusion of Nitrogen and Oxygen in a Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1325 (1986).
    28.Rubel-AM and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. pp 521-526. FUEL 1997.
    29.Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan(1974).
    30.Turnock, P. H., and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
    31.Welty, J.R.,C.R. Wicks, R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (June 1983).
    32.Yang, R.T. and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AICHE J., 31, 1829 (1985).
    33.Yang, R. T., and S. J. Doong, Gas Separation by Adsorption Processes, p. 127, p. 203, p. 255, p.256, p. 261, Butterworth, Boston (1987).
    34.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
    35.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).

    QR CODE
    :::