| 研究生: |
曾瑋玲 Wei-Ling Tseng |
|---|---|
| 論文名稱: |
土星系統裡的中性分子雲之結構與動力學 The Structure and Dynamics of the Neutral Cloud in the Saturnian System |
| 指導教授: |
葉永烜
Wing-Huen Ip |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 天文研究所 Graduate Institute of Astronomy |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 土星環 、磁球層 、電漿 、泰坦 、外氣層 、土星 |
| 外文關鍵詞: | Saturn, rings, magnetosphere, plasma, Titan, exosphere |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從1980年代的航海家太空船觀測,接下來的哈伯太空望遠鏡的觀測,以及最近的卡西尼號太空船的觀測,我們已經知道土星系統沉浸在一大片的中性分子氣體雲裡面,大部分是水分子以及其分解過後的產物,例如氫氧根分子、氧原子與氫原子。絕大多數的中性氣體都是由土衛(二)—恩斯拉達斯南極的冰噴泉機制所噴出的,以及少部分是由其他冰質衛星所貢獻的。另外,土星的環系統也是氧分子與氧原子的重要來源之一,而這些氧分子可以藉由離子—中性分子的碰撞作用產生,進而被彈射到土星磁球層的外圍區域。土衛(六)—泰坦的大氣層也是另一個提供中性分子的重要來源,包含氫分子(原子)、甲烷和氮氣。這些中性分子被游離之後,都是土星磁球層裡電漿成分。在這項研究工作中,我們利用數值模擬方法和卡西尼觀測中最新的電漿環境資訊,來了解這些分子雲氣的結構和成分。
本研究第一部分,是建立模型來了解環系統的氧氣大氣層和離子球層之結構與季節性的變化。模擬中有考慮到離子—中性分子的碰撞作用之電荷交換。因此,環系統的大氣分子可以進入到土星磁球層的外圍區域,而成為氧離子的來源之一。我們的研究結果,顯示如果環系統的氧氣主要是由光分解作用得到的話,則在土星春秋分的季節時,磁球中的氧離子會幾乎消失。
第二部分則是檢驗環系統大氣另一種質量來源,是否會對其結構或是季節性變化有何影響。由恩斯拉達斯而來的中性分子和電漿成分,有可能藉由冰微粒表面化學作用而還原成氧分子。如果這樣來源機制有可能比光分解還有效率的話,則環系統的大氣與離子球層可能不會隨著太陽照射仰角改變而有變化。然而,由其他冰質衛星產生的氧分子,相對於由環系統產生經由散射作用到磁球層外圍區域的比例,可能僅有少許的貢獻。
第三部分則是關於泰坦大氣層與土星磁球層電漿的交互作用。從卡西尼的觀測,我們知道磁場的結構與電漿流場是非常複雜多變的。我們採用合作者的磁流體力學模擬的電漿資料,來研究泰坦的撿拾離子的流量之空間變化,以及關於H2+,CH4+,N2+離子在泰坦外氣層底的能量沉積量之計算。這模擬結果還包含四個不同的泰坦公轉軌道位置。
最後,我們探討有關從泰坦大氣層逃逸出來的氫原子,在土星系統中的分布,隨著土星的季節變化之模擬結果。從前人的研究,已知氫原子的分布,會因太陽輻射壓力而呈現不對稱的形狀。另外,由卡西尼太空船所攜帶的紫外線光譜成像儀(UVIS)之觀測結果,顯示出土星的大氣層也可能是土星系統中的氫原子之重要來源。
From HST observations, Voyager flyby measurements and the Cassini in-situ measurements, we have learned that the Saturnian system is immersed in a vast neutral gas cloud of oxygen molecules, water molecules and their photodissociative products like OH, O and H. Most of the gas molecules originate from the plumes in the south pole of Enceladus plus some small contribution from other inner icy satellites. In addition, the ring system is an important source of oxygen atoms and molecules which can be injected into the distant Saturnian magnetosphere via scattering processes. Titan’s exosphere is another major source contributing neutral gas like H2 and H, and probably also CH4 and N2. These neutral materials will be fed into the thermal plasma disk in the inner Saturnian magnetosphere. In this work, the model calculations have been performed to simulate the structures and compositions of the neutral gas clouds of different origins making use of an updated photochemical and plasma chemistry model based on the latest plasma measurements from Cassini CAPS instrument.
The present modeling efforts have first led to the picture that an exospheric population of neutral oxygen molecules can be maintained in the vicinity of the main rings by means of photolytic decomposition of ice and other surface reactions. The momentum exchange effect via charge exchange collisions has been taken into consideration in the computation. The ring atmosphere, therefore, serves as a source of O2+ ions throughout Saturn’s magnetosphere. By the same token, our results also show that the magnetopheric O2+ ions should be nearly depleted at Saturn’s equinox if O2 is produced mainly by photolysis of the ring material.
Secondly, we have examined the mass budget of the ring oxygen atmosphere of Saturn taking into account of the possibility of an “exogenic” source i.e. Enceladus’ neutral gas cloud. The maximum O2 source rate from recycling of Enceladus-originated plasma and neutrals might be comparable to the maximum value from photolytic decomposition of the icy ring particles. In this case, the neutral O2 source rate in the Saturnian magnetosphere would be independent of the solar insolation angle. It is also shown that the O2 source from other inner icy satellites is smaller comparable to the scattered O2 component of ring-origin.
The third part of our work is about Titan’s exospheric interaction with the corotating magnetospheric plasma. From the Cassini observations, we know that the magnetic field configuration and plasma flow field are highly variable. We have employed the numerical results of the three dimensional MHD simulation of Kopp and Ip (2001) to study possible spatial and temporal variations in the pickup ion influx. The computation of the ion influx and energy deposit into Titan’s exobase for the H2+, CH4+ and N2+ pickup ions separately are shown. The model results of four different Titan’s orbital locations are also presented.
Finally, we consider the distribution of hydrogen atoms escaping from Titan due to the long-term perturbation effects of the solar radiation pressure and planetary oblateness as Saturn orbits Sun.
1. Barbosa, D.D. (1987),Titan’s atomic nitrogen torus: inferred properties and consequences for the Saturnian aurora. Icarus 72, 53–61.
2. Bouhram, M.; R. E. Johnson; J.-J. Berthelier; J.-M. Illiano; R. L. Tokar; D. T. Young; F. J. Crary (2006), A test-particle model of the atmosphere/ionosphere system of Saturn''s main rings, Geophys. Res. Lett., 33, L05016.
3. Burger, M. H., E. C. Sittler Jr., R. E. Johnson, H. T. Smith, O. J. Tucker and V. I. Shematovich (2007), Understanding the escape of water from Enceladus, J. Geophys. Res., 112, J. Geophys. Res., A06219
4. Bridge, H. S.; J. W. Belcher; A. J. Lazarus et al., (1981), Plasma observations near Saturn - Initial results from Voyager 1, Science, 212, 217-224.
5. Bridge, H. S.; F. Bagenal; J. W. Belcher et al., (1982), Plasma observations near Saturn - Initial results from Voyager 2, Science, 215, 563-570.
6. Broadfoot, A. L.; Sandel, B. R.; Shemansky, D. E.; Holberg, J. B.; Smith, G. R.; Strobel, D. F.; McConnell, J. C.; Kumar, S.; Hunten, D. M.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.; Bertaux, J. L.; Blamont, J. E.; Pomphrey, R. B.; Linick, S. (1981), Extreme ultraviolet observations from Voyager 1 encounter with Saturn, Science, 212, 206-211
7. Carlson, R. W. (1980), Photosputtering of Saturn’s rings, Nature, 283, 461-463.
8. Chambers, L. S., J. N. Cuzzi, E. Asphaug, J. Colwell, S. Sugita (2008), Hydrodynamical and radiative transfer modeling of meteoroid impacts into Saturn’s rings, Icarus, 194, 623-635.
9. Coates , A. J.; H. J. McAndrews, A. M. Rymer, D. T. Young, F. J. Crary, S. Maurice, R. E. Johnson (2005), Plasma electrons above Saturn''s main rings: CAPS observations, Geophys. Res. Lett., 32, L14S09
10. Connerney, J. E. P., M. H. Acuna, F. N. Ness (1983), Currents in Saturn''s magnetosphere, J. Geophys. Res., 88, 8779-8789.
11. Connerney, J. E. P., and J. H. Waite (1984), New model of Saturn’s ionosphere with an influx of water from the rings, Nature, 312, 136-138.
12. Cui, J.; Yelle, R. V.; Volk, K (2008), Distribution and escape of molecular hydrogen in Titan''s thermosphere and exosphere, J. Geophys. Res., 113, E10004
13. Cravens, T.E., Vann, J., Clark, J., Yu, J., Keller, C.N., Brull, C. (2004),The ionosphere of Titan: an updated theoretical model. Adv. Space Res. 33, 212–215.
14. Farrell, W. M.; M. L. Kaiser; D. A. Gurnett; W. S. Kurth; A. M. Persoon; J. E. Wahlund; P. Canu (2008), Mass unloading along the inner edge of the Enceladus plasma torus, Geophys. Res. Lett., 35, L02203
15. de Graauw, T.; H. Feuchtgruber; B. Bezard et al. (1997), First results of ISO-SWS observations of Saturn: detection of CO2, CH3C2H, C4H2 and tropospheric H2O, A&A, 321, L13-L16
16. Esposito, L. W., M. Ocallaghan, K. E. Simmons, C. W. Hord, R. A. West, A. L. Lane, R. B. Pomphrey, D. L. Coffeen and M. Sato (1983), Voyager photopolarimeter stellar occultation of Saturn’s rings, J. Geophys. Res., 88, 8643-8649.
17. Farrell,W. M.; M. L. Kaiser; D. A. Gurnett; W. S. Kurth; A. M. Persoon; J. E. Wahlund; P. Canu (2008), Mass unloading along the inner edge of the Enceladus plasma torus, Geophys. Res. Lett., 35, L02203
18. Feuchtgruber, H.; E. Lellouch; T. de Graauw; B. Bezard; T. Encrenaz; M. Griffin (1997), External supply of oxygen to the atmospheres of giant planets ,Nature, 389, 159-162 Goertz, C. K., M. Morfill (1983), A model for the formation of spokes in Saturn''s rings, Icarus,53,219-229
19. Galand, M.L., Lilensten, J., Toublanc, D., Maurice, S. (1999), The ionosphere of Titan: ideal diurnal and noctunal cases. Icarus 140, 92–105.
20. Goldreich, P. and A. J. Farmer (2007), Spontaneous axisymmetry breaking of the external magnetic field at Saturn, J. Geophys, Res. 112, A05225
21. Graps, A.L., G. H. Jones, A. Juhasz, M. Horanyi, and O. Havnes (2008), The charging of planetary rings, Space Sci. Rev. 137, 435-453.
22. Hansen, C. J.; L. Esposito; A. I. Stewart et al. (2006), Enceladus’ Water Vapor Plume, Science, 311, 1422-1425
23. Hartle, R.E., Sittler Jr., E.C., Neubauer, F.M., Johnson, R.E., Smith, H.T., Crary, F., McComas, D.J., Young, D.T., Coates, A.J., Simpson, D., Bolton, S., Reisenfeld, D., Szego, K., Berthelier, J.J., Rymer, A., Vilppola, J., Andre, N. (2006), Preliminary interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: comparisons with Voyager 1. Geophys. Res. Lett. 33.
24. de La Haye, V., Waite, J.H., Cravens, T.E., Nagy, A.F., Johnson, R.E., Lebonnois, S., Robertson, I.P. (2007), Titan’s corona: the contribution of exothermic chemistry. Icarus 191, 236–250.
25. de La Haye, V.; Waite, J. H.; Johnson, R. E.; Yelle, R. V.; Cravens, T. E.; Luhmann, J. G.; Kasprzak, W. T.; Gell, D. A.; Magee, B.; Leblanc, F.; Michael, M.; Jurac, S.; Robertson, I. P. (2007), Cassini Ion and Neutral Mass Spectrometer data in Titan''s upper atmosphere and exosphere: Observation of a suprathermal corona, J. Geophys. Res., 112, A07309
26. Huebner, W.F., Giguere, P.T. (1980), A model of comet comae. II: Effects of solar photodissociation ionization. Astrophys. J. 238, 753.
27. Huebner, W. F.; J. J. Keady; S. P. Lyon (1992), Solar photo rates for planetary atmospheres and atmospheric pollutants, Ap&SS, 195, 1-295
28. Ip, W.-H. (1984a), Plasmatization and recondensation of the Saturnian rings, Nature, 320, 143-145.
29. Ip, W.-H. (1984b), Electrostatic charging of the rings of Saturn: A parameter study, J. Geophys. Res.,89, 3829-3836.
30. Ip, W.-H. (1984c), On the Equatorial Confinement of Thermal Plasma Generrated in Vicinity of the Rings of Saturn J. Geophys. Res., 89, 395-398.
31. Ip, W.-H. (1988), On a hot oxygen corona of Mars, Icarus, 76, 135-145
32. Ip, W.-H. (1995), Exospheric systems of Saturn’s rings, Icarus, 115, 295-303
33. Ip, W.-H. (1996), The Asymmetric Distribution of Titan''s Atomic Hydrogen Cloud as a Function of Local Time, ApJ, 457, 922
34. Ip, W.-H. (1997), On the Neutral Cloud Distribution in the Saturnian Magnetosphere, Icarus, 126, 42-57
35. Ip, W.-H. (2000), Thermal plasma composition in Saturn''s magnetosphere, P&SS, 48, 7-8, 775-783
36. Ip, W.-H. (2005), An update on the ring exosphere and plasma disc of Saturn, Geophys. Res. Lett., 32 L13204
37. Johnson, R. E.; J. W. Boring; C. T. Reimann; L. A. Barton; J. W. Sieveka; J. W. Garrett; K. R. Farmer; W. L. Brown; L. J. Lanzerotti (1983), Plasma ion-induced molecular ejection on the Galilean satellites - Energies of ejected molecules, Geophys. Res. Lett., 10, 892-895
38. Johnson, R.E. and T.I. Quickenden, (1997) “Photolysis and Radiolysis of Water Ice on Outer Solar System Bodies”, J. Geophys. Res.102, 10985-10996
39. Johnson, R. E.; Liu, M.; Sittler, E. C. (2005), Plasma-induced clearing and redistribution of material embedded in planetary magnetospheres, Geophys. Res. Lett., 32 L24201
40. Johnson, R.E., J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Sittler, J.F.Cooper, T.W. Hill, F.J. Crary, and D.T. Young (2006), Production, ionization and redistribution of Saturn’s O2 ring atmosphere, Icarus, 180, 393-402.
41. Jurac, S and J. D. Richardson (2005), A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology, Geophys. Res. Lett., 110 A09220
42. Jurac, S and J. D. Richardson (2007), Neutral cloud interaction with Saturn''s main rings, Geophys. Res. Lett., 34 L08102
43. Kabin, K., Gombosi, T.I., DeZeeuw, D.L., Powell, K.G., Israelevich, P.L. (1999), Interaction of the Saturnian magnetosphere with Titan. J. Geophys. Res. 104, 2451.
44. Kabin, K., Israelevich, P.L., Ershkovich, A.I., Neubauer, F.M., Gombosi, T.I., DeZeeuw, D.L., Powell, K.G. (2000), Titan’s magnetic wake: atmospheric or magnetospheric interaction. J. Geophys. Res. 105 (10), 761.
45. Kallio, E., Sillanpaa, I., Janhunen, P. (2004), Titan in subsonic and supersonic flow. Geophys. Res. Lett. 31, L15703.
46. Kopp, A. (1996), Modifications of the electrodynamic interaction between Jupiter and Io due to mass loading effects. J. Geophys. Res. 101, 24943–24954.
47. Kopp, A., Ip, W.-H. (2001), Asymmetric mass loading effect at Titan’s ionosphere. J. Geophys. Res. 106, 8323–8332.
48. Krasnopolsky, Vladimir A. (2009), A photochemical model of Titan''s atmosphere and ionosphere, Icarus, 201, 226-256
49. Krimigis, S.M., Mitchell, D.G., Hamilton, D.C. et al. (2006), Dynamics of Saturn''s Magnetosphere from MIMI During Cassini''s Orbital Insertion, Science, 307, 1270-1273.
50. Lammer, H., Bauer, S.J. (1993), Atmospheric mass loss from Titan by sputtering. Planet. Space Sci. 41, 657–663.
51. Ledvina, S.A., Cravens, T.E. (1998), A three-dimensional MHD model of plasma flow around Titan. Planet. Space Sci. 46, 1175.
52. Ledvina, S.A., Cravens, T.E. (2005), Ion distributions in Saturn’s magnetosphere near Titan. J. Geophys. Res. 110.
53. Luhmann, J.G. (1996), Titan’s ion exosphere wake: a neutral ion mass spectrometer? J. Geophys. Res. 101, 29387–29393.
54. Luhmann, J.G., R.E. Johnson, R.L. Tokar, Ledvina, S.A. and T.E. Cravens (2006), A model of the ionosphere of Saturn’s rings and its implications, Icarus, 181, 465-474.
55. Ma, Yingjuan, Nagy, Andrew F., Cravens, Thomas E., et al. (2006), Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. 111, A05207.
56. Martens, H.R., D.B. Reisenfeld, J.D. Williams, R.E. Johnson and H.T. Smith (2008), Observations of molecular oxygen ions in Saturn’s inner magnetosphere, Geophys. Res. Lett., 35 L20103.
57. Melin, H.; D. E. Shemansky and X. Liu (2009), The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn, Planet. Space Sci., In press
58. Michael, M., Johnson, R.E. (2005), Energy deposition of pickup ions and heating of Titan’s atmosphere. Planet. Space Sci. 53, 1510–1514.
59. Michael, M., Johnson, R.E., Leblanc, F., Liu, M., Luhmann, J.G., Shematovich, V.I. (2005), Ejection of nitrogen from Titan’s atmosphere by magnetospheric ions and pick-up ions. Icarus 175, 263–267.
60. Moore, L. E.; Mendillo, M.; Müller-Wodarg, I. C. F.; Murr, D. L. (2004), Modeling of global variations and ring shadowing in Saturn''s ionosphere, Icarus, 172, 503-520
61. Morfill, G. E., Fechtig, H., Grun, E., Goertz, C.K. (1983), Some consequences of meteoroid impacts on Saturn’s rings, Icarus 55, 439-447
62. Moses, J.I., E. Lellouch, B. Bézard, G.R. Gladstone, H. Feuchtgruber and M. Allen (2000) Photochemistry of Saturn''s Atmosphere. II. Effects of an Influx of External Oxygen, Icarus, 145, 166-202.
63. Müller-Wodarg, I. C. F.; Yelle, R. V.; Cui, J.; Waite, J. H. (2008), Horizontal structures and dynamics of Titan''s thermosphere, J. Geophys. Res. 113, E10005
64. Nagy, A.F., Liu, Y., Hansen, K.C., Kabin, K., Gombosi, T.I., Combi, M.R., DeZeeuw, D.L., et al. (2001), The interaction between the magnetosphere of Saturn and Titan’s ionosphere. J. Geophys. Res. 106, 6151–6160.
65. Ness, N.F., Acuna, M.H., Behannon, K.W., Neubauer, F.M. (1982), The induced magnetosphere of Titan. J. Geophys. Res. 87, 1369–1381.
66. Neubauer, F.M., Gurnett, D.A., Scudder, J.D., Hartle, R.E. Titan’s magnetospheric interaction, in: Gehrels, T., Matthews, M.S. (1984), (Eds.), Saturn. University of Arizona Press, Tucson, pp. 760–787.
67. Otto, A. (1990), 3D resistive MHD computations of magnetospheric physics. Comput. Phys. Commun. 59, 185–195.
68. Porco, C. C.; P. Helfenstein; P. C. Thomas et al., (2006), Cassini Observes the Active South Pole of Enceladus, Science, 311, 1393-1401
69. Pospieszalska, M.K. and R.E. Johnson (1991), Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian plasma torus. Icarus, 93, 45-52
70. Richardson, J. D. and E.C. Sittler (1990), A plasma density model for Saturn based on Voyager observations, J. Geophys. Res.95, 12019-12031
71. Richardson, John D. (1995), An extended plasma model for Saturn, Geophys. Res. Lett., 22, 1177-1180
72. Shemansky, D. E. and T. D. Hall (1992), The distribution of atomic hydrogen in the magnetosphere of Saturn, J. Geophys. Res.97,4143-4161
73. Shemansky, D. E.; P. Matheson; T. D. Hall; H.-Y. Hu; T. M. Tripp (1993), Detection of the hydroxyl radical in the Saturn magnetosphere, Nature, 363, 329-331
74. Shemansky, D. E.; X, Liu and H. Melin (2009), The Saturn hydrogen plume, Planet. Space Sci., In press
75. Sillanpaa, I., Kallio, E., Janhunen, P., Schmidt, W., Mursula, K., Vilppola, J., Tanskanen, P. (2006), Hybrid simulation study of ion escape at Titan for different orbital positions. Adv. Space Res. 38, 799–805.
76. Sittler, E.C., Johnson, R.E., Jurac, S., Richardson, J.D., McGrath, M., Crary, F., Young, D.T., Nordholt, J.E. (2004), Pickup ions at Dione and Enceladus: Cassini plasma spectrometer simulations. J. Geophys. Res. 109, A01214.
77. Sittler Jr., E.C., Hartle, R.E., Vinas, A.F., Johnson, R.E., Smith, H.T., Mueller-Wodarg, I. (2005), Titan interaction with Saturn’s magnetosphere: Voyager 1 results revisited. J. Geophys. Res. 110.
78. Smith, H.T., Johnson, R.E., Shematovich, V. (2004), Titan’s atomic and molecular nitrogen tori. Geophys. Res. Lett. 31, L16804.
79. Smyth, W. H.; Marconi, M. L. (1993), The nature of the hydrogen tori of Titan and Triton, Icarus, 101, 18-32
80. Strobel Darrell F. (2008), Titan''s hydrodynamically escaping atmosphere, Icarus, 193, 588-594
81. Tokar et al., (2005), Cassini observations of the thermal plasma in the vicinity of Saturn’s main ring and the F and G rings, Geophys. Res. Lett., 32 L14S04
82. Tseng, Wei-Ling, W.-H. Ip, R. E. Johnson, T. A. Cassidy and M. K. Erlod (2009), The Structure and Time Variability of the Ring Atmosphere and Ionosphere, Icarus, In press.
83. Waite, J. H., et al. (2005), Oxygen ions observed near Saturn’s A ring, Science, 307, 1260-1262
84. Waite, J.H., Niemann, H., Yelle, R., et al. (2005), Ion neutral mass spectrometer results from the first flyby of Titan. Science 308, 982–986.
85. Waite, J. H; M. R. Combi; W.-H. Ip et al., (2006), Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure, Science, 311, 1419-1422
86. Westley, M., R.A. Baragiola, R.E. Johnson, and G. Baratta (1995) Photo desorption from low temperature water ice: Astrophysical Implications, Nature 373, 405-407.
87. Yelle, Roger V.; Borggren, N.; de La Haye, V.; Kasprzak, W. T.; Niemann, H. B.; Müller-Wodarg, I.; Waite, J. H. (2006), The vertical structure of Titan''s upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements, Icarus, 182, 567-576
88. Yelle, R. V.; Cui, J.; Müller-Wodarg, I. C. F. (2008), Methane escape from Titan''s atmosphere, J. Geophys. Res., 113, E10003
89. Young, D. T., et al. (2005), Composition and dynamics of plasma in Saturn’s magnetosphere, Science, 307,1262-1266.