跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭豫立
Yuli cheng
論文名稱: 近地小行星的分類和軌道動力學
Taxonomic Classification and Orbital Dynamics of Near-Earth Asteroids
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 120
中文關鍵詞: 近地小行星軌道動力學機器學習
外文關鍵詞: Near-Earth asteroid, Orbital dynamics, Machine learning
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們的目標是對自2010年至今的鹿林光度觀測數據集進行分類。在進行這項工作之前,
    我們使用了主成分分析並應用了顏色-顏色指數來編目近地小行星(NEAs)。然而,由
    於它們的顏色數值相似,有時很難區分S型和Q型NEAs的相對反射率。為了使預測結果
    更準確,我們應用了機器學習技術。我們使用了幾種算法,包括決策樹、隨機森林、
    邏輯回歸、支持向量機和神經網絡


    We aim to classify the dataset of Lulin photometry observations from 2010 to the present.
    Prior to this study, we utilized Principle Component Analysis and applied a color-color
    index to catalog near-Earth Asteroids (NEAs). However, distinguishing between the relative reflectance of S-type and Q-type NEAs proved challenging due to the similarity in
    their color values. To enhance the accuracy of our predictions, we incorporated machine
    learning techniques. We employed several algorithms, including decision trees, random
    forests, logistic regression, support vector machines, and neural networks.

    1 Introduction 1 2 Machine learning in taxonomic classification of near-Earth objects according to Lulin photometric measurements 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 On an assessment of the effect of planetary encounters on the gardening of the surface materials of near-Earth asteroids 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    Abiodun O. I., Jantan A., Omolara A. E., Dada K. V., Mohamed N. A., Arshad H., 2018,
    Heliyon, 4, e00938
    Amari S.-i., Wu S., 1999, Neural Networks, 12, 783
    Anguita D., Ghio A., Greco N., Oneto L., Ridella S., 2010, in The 2010 international joint
    conference on neural networks (IJCNN). pp 1–8
    Asphaug E., 1997, Meteoritics & Planetary Science, 32, 965
    Asphaug E., Benz W., 1994, Nature, 370, 120
    Binzel R. P., Rivkin A. S., Stuart J. S., Harris A. W., Bus S. J., Burbine T. H., 2004,
    Icarus, 170, 259
    Binzel R. P., et al., 2010, Nature, 463, 331
    Bishop C. M., 1994, Review of scientific instruments, 65, 1803
    Bisong E., Bisong E., 2019, Building machine learning and deep learning models on google
    cloud platform: A comprehensive guide for beginners, pp 243–250
    Bolin B. T., Morbidelli A., Walsh K. J., 2018, A&A, 611, A82
    Bottke W. F., 2002, in AAS/Division of Dynamical Astronomy Meeting #33. p. 02.01
    Bottke W. F., Vokrouhlick´y D., Broz M., Nesvorn´y D., Morbidelli A., 2001, Science, 294,
    1693
    89
    BIBLIOGRAPHY 90
    Bottke W. F., Durda D. D., Nesvorn´y D., Jedicke R., Morbidelli A., Vokrouhlick´y D.,
    Levison H. F., 2005, Icarus, 179, 63
    Breiman L., 2001, Machine learning, 45, 5
    Bus S. J., Binzel R. P., 2002, Icarus, 158, 146
    Cao W., Wang X., Ming Z., Gao J., 2018, Neurocomputing, 275, 278
    Carry B., Solano E., Eggl S., DeMeo F. E., 2016, Icarus, 268, 340
    Chapman C. R., Morrison D., Zellner B., 1975, Icarus, 25, 104
    Charbuty B., Abdulazeez A., 2021, Journal of Applied Science and Technology Trends,
    2, 20
    Chrbolkov´a K., et al., 2021, Astronomy & Astrophysics, 654, A143
    Cios K. J., Swiniarski R. W., Pedrycz W., Kurgan L. A., Cios K. J., Swiniarski R. W.,
    Pedrycz W., Kurgan L. A., 2007, Data Mining: A Knowledge Discovery Approach, pp
    257–288
    Clark B., Bus S., Rivkin A., Shepard M., Shah S., 2004, The Astronomical Journal, 128,
    3070
    Dayan P., Sahani M., Deback G., 1999, The MIT encyclopedia of the cognitive sciences,
    pp 857–859
    DeMeo F. E., Binzel R. P., Slivan S. M., Bus S. J., 2009, Icarus, 202, 160
    DeMeo F. E., Binzel R. P., Lockhart M., 2014, Icarus, 227, 112
    DeMeo F. E., Polishook D., Carry B., Burt B. J., Hsieh H. H., Binzel R. P., Moskovitz
    N. A., Burbine T. H., 2019, Icarus, 322, 13
    Debnath R., Takahide N., Takahashi H., 2004, Pattern Analysis and Applications, 7, 164
    Dobrovolskis A. R., 1990, Icarus, 88, 24
    BIBLIOGRAPHY 91
    Dreiseitl S., Ohno-Machado L., 2002, Journal of biomedical informatics, 35, 352
    Ghaddar B., Naoum-Sawaya J., 2018, European Journal of Operational Research, 265,
    993
    Goeman J., Meijer R., Chaturvedi N., 2012, cran. r-project. or
    Han S., Pool J., Tran J., Dally W., 2015, Advances in neural information processing
    systems, 28
    Hastie T., Tibshirani R., Friedman J. H., Friedman J. H., 2009, The elements of statistical
    learning: data mining, inference, and prediction. Vol. 2, Springer
    Hecht-Nielsen R., 1992, in , Neural networks for perception. Elsevier, pp 65–93
    Hiroi T., Bell J. F., Takeda H., Pieters C. M., 1993, Icarus, 102, 107
    Holmberg J., Flynn C., Portinari L., 2006, Monthly Notices of the Royal Astronomical
    Society, 367, 449
    Hoo Z. H., Candlish J., Teare D., 2017, What is an ROC curve?
    Howley T., Madden M. G., 2005, Artificial intelligence review, 24, 379
    Jais I. K. M., Ismail A. R., Nisa S. Q., 2019, Knowledge Engineering and Data Science,
    2, 41
    John G. H., 1995, in KDD. pp 174–179
    Kaelbling L. P., Littman M. L., Moore A. W., 1996, Journal of artificial intelligence
    research, 4, 237
    Karsmakers P., Pelckmans K., Suykens J. A., 2007, in 2007 International Joint Conference
    on Neural Networks. pp 1756–1761
    Kim Y., Hirabayashi M., Binzel R. P., Brozovi´c M., Scheeres D. J., Richardson D. C.,
    2021, Icarus, 358, 114205
    BIBLIOGRAPHY 92
    Kingsford C., Salzberg S. L., 2008, Nature biotechnology, 26, 1011
    Kumar V., Kalitin D., Tiwari P., 2017, in 2017 international conference on computing,
    communication and automation (ICCCA). pp 32–37
    LaValley M. P., 2008, Circulation, 117, 2395
    Lagerkvist C.-I., Fitzsimmons A., Magnusson P., Williams I., 1993, Monthly Notices of
    the Royal Astronomical Society, 260, 679
    Lee T.-H., Ullah A., Wang R., 2020, Macroeconomic forecasting in the era of big data:
    Theory and practice, pp 389–429
    Lin H., Yoshida F., Chen Y., Ip W., Chang C., 2015, Icarus, 254, 202
    Lin C.-H., Ip W.-H., Lin Z.-Y., Cheng Y.-C., Lin H.-W., Chang C.-K., 2018, Planetary
    and Space Science, 152, 116
    Marchi S., Magrin S., Nesvorn`y D., Paolicchi P., Lazzarin M., 2006, Monthly Notices of
    the Royal Astronomical Society: Letters, 368, L39
    Menard S., 2011, Social Forces, 89, 1409
    Morbidelli A., Vokrouhlick`y D., 2003, Icarus, 163, 120
    Morota T., et al., 2020, Science, 368, 654
    Myles A. J., Feudale R. N., Liu Y., Woody N. A., Brown S. D., 2004, Journal of Chemometrics: A Journal of the Chemometrics Society, 18, 275
    Nesvorn´y D., Bottke W. F., Vokrouhlick´y D., Chapman C. R., Rafkin S., 2010, Icarus,
    209, 510
    Noble W. S., 2006, Nature biotechnology, 24, 1565
    Noguchi T., et al., 2011, Science, 333, 1121
    Noguchi T., et al., 2014, Meteoritics & Planetary Science, 49, 188
    BIBLIOGRAPHY 93
    Polydoros A. S., Nalpantidis L., 2017, Journal of Intelligent & Robotic Systems, 86, 153
    Qi X., Wang T., Liu J., 2017, in 2017 Second International Conference on Mechanical,
    Control and Computer Engineering (ICMCCE). pp 151–155
    Quinlan J. R., 1996, ACM Computing Surveys (CSUR), 28, 71
    Richardson D. C., Bottke Jr W. F., Love S. G., 1998, Icarus, 134, 47
    Roig F., Gil-Hutton R., 2006, Icarus, 183, 411
    Scotti J., Melosh H., 1993, Nature, 365, 733
    Sharma I., Jenkins J. T., Burns J. A., 2006, Icarus, 183, 312
    Shmilovici A., 2010, Data mining and knowledge discovery handbook, pp 231–247
    Smola A. J., Sch¨olkopf B., 2004, Statistics and computing, 14, 199
    Sridhar S., Tremaine S., 1992, Icarus, 95, 86
    Staelin C., 2003, Hewlett-Packard Company, Tech. Rep. HPL-2002-354R1, 1
    Stuart J. S., Binzel R. P., 2004, Icarus, 170, 295
    Sugita S., et al., 2019, Science, 364, eaaw0422
    Tholen D. J., 1984, Asteroid taxonomy from cluster analysis of photometry. The University
    of Arizona
    Vernazza P., Binzel R. P., Rossi A., Fulchignoni M., Birlan M., 2009, Nature, 458, 993
    Vernazza P., et al., 2017, The Astronomical Journal, 153, 72
    Vokrouhlick`y D., Milani A., Chesley S., 2000, Icarus, 148, 118
    Wythoff B. J., 1993, Chemometrics and Intelligent Laboratory Systems, 18, 115
    Xu C., Lu C., Liang X., Gao J., Zheng W., Wang T., Yan S., 2015, IEEE Transactions
    on Circuits and Systems for Video Technology, 26, 2273
    94 BIBLIOGRAPHY
    Yada T., et al., 2021
    Yarats D., Zhang A., Kostrikov I., Amos B., Pineau J., Fergus R., 2021, in Proceedings
    of the AAAI Conference on Artificial Intelligence. pp 10674–10681
    Zeller E. J., Ronca L. B., 1967, Icarus, 7, 372
    Zou X., Hu Y., Tian Z., Shen K., 2019, in 2019 IEEE 7th international conference on
    computer science and network technology (ICCSNT). pp 135–139

    QR CODE
    :::