跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝文傑
Wen-Chieh Hsieh
論文名稱: 磁暴與磁副暴的關係:檢視跨磁尾電流對 SYM-H 的貢獻
Storm-substorm relationship: Reexamination of the contribution of the tail current to Dst.
指導教授: 許志浤
Jih-Hong Shue
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 94
語文別: 中文
論文頁數: 61
中文關鍵詞: 磁暴跨磁尾電流磁副暴
外文關鍵詞: substorm, tail current, Dst, storm
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇研究報告中,我們再一次檢視Ohtani et al. [2001] 所得出的結論:在磁副暴發生時,會對 SYM-H 帶來負面的貢獻,即在磁副暴發生後,會使得 SYM-H 呈現正增長趨勢,Ohtani et al. [2001] 得出的原因,為跨磁尾電流減弱對 SYM-H 所帶來的貢獻,會勝過因磁副暴物質拋入造成環形電流增強對SYM-H 所帶來的貢獻。在此篇研究報告中,我們藉由Liou et al. [1999] 所判別的磁副暴發生時間點的清單,並以此時間點為新的時間軸,去觀察在磁副暴發生後 SYM-H 的變化,同時我們也檢視ASY-H在磁副暴發生之後是如何變化的。我們所得到的結論是:(1) 我們無法結論出在磁副暴發生後,跨磁尾電流與環形電流的變化對地球磁場的影響,能有一致的定性關係,當我們在探究造成 SYM-H 變化的因素時,我們必須將環形電流位置變動的因素納入考慮。(2) 由對 SYM-H 和行星際磁場 Bz 相對於磁副暴發生時間點的平均變化趨勢的觀察,我們得出 - 行星際磁場的狀況是影響地球磁場變動的主因 - 的結論。(3) 在磁副暴發生後,ASY-H 的變化趨勢與極光能量積分值的變化趨勢,有一個約十分鐘左右的時間延遲關係,在北向行星際磁場環境中,ASY-H的變化趨勢是相當小的,幾近毫無變化。


    In the present study, we reexamine the conclusion by Ohtani et al. [2001] that substorms make apparently negative contributions to Dst since the associated reduction of the tail current overcompensates the effect of the ring-current intensification due to particle injection. In this study, we use a list of substorm onsets compiled by Liou et al. [1999] and choose the substorm onset time as a reference time of the variation of SYM-H after the substorm onset. At the same time, we examine how ASY-H respond to the substorm onset. We conclude that (1) we can not confirm any consequential relationship between the variation of SYM-H and the the reduction of the tail current and the intensification of ring current. As to how different factors affect the SYM-H index, we have taken the IMF Bz effect into consideration. (2) Through the superposed epoch analysis, we find that the variation of IMF Bz is the main cause of the variation of SYM-H. (3) We also find that there is a time lag between the variation of auroral power and the variation of ASY-H, and we notice that under the northward IMF Bz condition the variation of ASY-H responds poor to the variation of the auroral power.

    目錄 摘要 I 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 簡介 1 1.1.1 什麼是磁暴 1 1.1.2 什麼是磁副暴 3 1.1.3 磁暴與副磁暴的關係 8 1.2 先前的研究 8 1.3 動機及目的 13 第二章 資料與資料處理分析方法 14 2.1 資料 14 2.1.1 中緯度地球磁場參數;ASY-H和 SYM-H 14 2.1.2 Polar UVI,極光能量積分 15 2.1.3 磁副暴事件時間清單 16 2.1.4 行星際磁場 17 2.2 資料處理方法 17 2.2.1 個案處理方法 17 2.2.2 Superposed Epoch Analysis 分析方法 19第三章 資料分析結果 22 3.1 個案研究 22 3.2 Superposed Epoch Analysis 分析方法 26 3.2.1 平均 SYM-H > -30事件 vs. 平均 SYM-H < -40事件 26 3.2.2 北向行星際磁場環境事件 vs. 南向行星際磁場環境事 件 32 第四章 討論與結論 38 4.1 討論 38 4.2 結論 45 參考文獻 46 附錄一 磁副暴事件時間清單 52 附錄二 座標系統簡介 61

    Akasofu, S.-I., and S. Chapman, The ring current, geomagnetic
    disturbance, and the Van Allen radiation belts, J. Geophys.
    Res., 66, 1321, 1961.
    Akasofu, S.-I., Polar and Magnetospheric Substorms, D. Reidel,
    Norwell, Mass, 1968.
    Akasofu, S.-I., S. Chapman, and C.-I. men, The polar
    electrojet, J. Atmos Terr. Phys. 27(11/12), 1275-1305,
    1965.
    Burton, R. K., R. L. McPherron, and C. T. Russell, An empirical
    relationship between interplanetary conditions and Dst, J.
    Geophys. Res., 80, 4204, 1975.
    Chapman, S., Earth storms: retrospect and prospect, 17, J.
    Phys. Soc. Jpn., 6, 1962.
    Ching-I Meng and Kan Liou, Substorm timeings and Timescales:
    A new aspect, Space Sci. Rev., 113, 41, 2004
    Crooker, N. U., High-Time Resolution of the Low-Latitude
    Asymmetric Disturbance in the Geomagnetic Field, J.
    Geophys. Res., 77, 773 ,1972
    Cummings, W. D., J. N. Barfield, and P. J. Coleman, Jr., Magnetospheric
    substorms observed at the synchronous orbit, J. Geophys. Res., 73, 6887,
    1968.Daglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini, The
    terrestrial ring current: Origin, formation, and decay,
    Rev. Geophys., 37, 407, 1999.
    Erickson, K. N., R. L. Swanson, R. J. Walker, and J. R. Winckler, Astudy of
    magnetosphere dynamics during auroral electrojet events by observations of
    energetic electron intensity changes at synchronous orbit, J. Geophys.
    Res., 84, 931, 1979.
    Fairfield, D. H. and N. F. NESS, Configuration of the geomagnetic tail during
    substorm, J. Geophys. Res., 75, 7032, 1970.
    Germany, G. A., G. K. Parks, M. Brittnacher, J. Cumnock, D.
    Lummmerzheim, J. F. Spann, L. Chen, P. G. Richards, and F.
    J. Rich, Rrmote determination of auroral energy
    characteristics during substorm activitym, Geophys. Res.
    Lett., 24., 955, 1997
    Gonzalez,W. D., J. A. Joselyn, Y. Kamide, H. K. Kroehl, G.
    Rostoker, B. T. Tsurutani, and V. M. Vasyliunas, What is
    a geomagnetic storm?, J. Geophys. Res., 99, 5771, 1994.
    Iyemori, T., Araki, T., Kamei, T., Takeda, M., Mid-latitude
    Geomagnetic Indices “ASY” and “SYM” for 1999
    (Provisional), Data Analysis Center for Geomagnetism and
    Space Magnetism, Graduate School of Science, Kyoto
    University, Kyoto 606-8502, Japan, 2000
    Kamide, Y., Baumjohann, W., Daglis, I. A., Gonzalez, W.D.,
    Grande, M., Joselyn, J. A., McPherron, R. L., Phillips, J.
    L., Reeves, G. D., Rostoker, G., Sharma, A. S., Singer, H.
    J., Tsurutani, B. T., and Vasyliunas, V. M., “Current
    Understanding of Magnetic Storms: Strom/Substorm
    Relationships”, J. Geophys. Res. 103,17705, 1998.
    Lezniak, T. W. and J. R. Winckler, Experimental study of magnetospheric
    motions and the acceleration of energetic electrons during substorms, J.
    Geophys. Res., 75, 7075, 1970.
    Liou, K., Meng, C.-I.., Newell, P. T., Brittnacher, M. and
    Parks, G., Characteristics of the solar wind controlled
    auroral emissions, J. Geophys. Res. 103, 17543, 1998.
    Liou, K., Meng, C.-I., Lui, A. T. Y., Newell, P. T.,
    Brittnacher, M. and Parks, G., ‘On Relative Timing in
    Substorm Onset Signatures’. J. Geophys. Res. 104,
    22,807–22,817, 1999.
    Liou, K., Meng, C.-I., Lui, A. T. Y., Newell, P. T. and Wing,
    S.: 2002,‘Magnetic Dipolarization With Substorm
    Expansion Onset’. J. Geophys. Res. 107, 1428.
    Lui, A. T. Y., Current controversies in the magnetospheric physics, Rev. of
    Geophys., 34, 535-563, 2001
    Maltsev, Y. P., and A. A. Ostapenko, Statistical assessment of
    the magnetotail current contribution to Dst, Sixth
    International Conference on Substorms, March 25-29, 2002,
    University of Washington, Seattle, pp. 358-363, 2002
    McPherron R. L., Growth phase of magnetospheric substorms, J. Geophys. Res.,
    75, 5592, 1970.
    McPherron R. L., Magnetospheric Dynamics, Introduction to
    Space Physics, 1995
    McPherron R. L., “ The role of substorms in the generation
    of magnetic storms,” in Magnetic Storms, Geophysical
    Monograph Series, B. T. Tsurutani, W. D. Gonzalez, Y.
    Kamide, and J. K. Arballo, Eds. Washington, DC: Amer.
    Geophys. Union, 1997, vol 98, pp. 131-147
    McPherron R. L., CALCULATION OF THE Dst INDEX, Presentation at LWS CDAW
    Workshop Fairfax, Virginia March 14-16, 2005
    Meng, Chen-I, and Liou, Kan, Substorm timings and timescales: A new aspect,
    Space, Sci. Rev., 113, 41-75, 2004.
    Ohtani, S., M. Nose´, G. Rostoker, H. Singer, A. T. Y. Lui, and
    M. Nakamura (2001), Storm-substorm relationship:
    Contribution of the tail current to Dst, J. Geophys. Res.,
    106, 21,199.
    Rostoker, G., Phenomenology and physics of magnetospheric
    substorms, J. Geophys. Res., 101, 12,955, 1996.
    Sauvaud, J.-A., and J. R. Winckler, Dynamics of plasma, energetic particles,
    and fields near synchronous orbit in the nighttime sector during
    magnetospheric substorms, J. Geophys. Res., 85, 2043, 1980.
    Torr, M. R., et al., A far ultraviolet imager for the international solar-
    terrestrial physics mission, Space Sci. Rev., 71, 329, 1995.
    Wolf, R. A., J. W. Freeman Jr., B. A. Hausman, R. W. Spiro, R.
    B. Hilmer, and R. L. Lambour, Modeling convection effects
    in magnetic storms, in Magnetic Storms, Geophys. Monogr.
    Ser., vol. 98, edited by B. T. Tsurutani et al., p. 161,
    AGU, Washington, D. C., 1997.

    QR CODE
    :::