跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊介瑋
Chieh-wei Chuang
論文名稱: 臺灣台南外海正斷層以及近代沉積現象研究
A study on normal faults and recent sedimentary features offshore Tainan, Taiwan
指導教授: 林殿順
Andrew Tien-Shun Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 台南盆地義竹斷層海域震測
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣台南一帶平原區的構造主要為東西走向的正斷層,其中疑似活動斷層的義竹斷層為向南傾沒的正斷層並由台南陸上延伸至台灣海峽南端。本研究收集處理海研一號986及1033航次,總長約一千三百公里的多頻道反射震測以及海床底質剖面配合五口井測資料作為岩性、年代的控制,解釋台南外海之海域斷層分布、形貌以及活動性。震測資料顯示義竹斷層以南二十公里內發育密集的正斷層,這些斷層的斷距以及側向延續性遠小於義竹斷層並主要為東西走向。其中位於曾文溪出海口外的A1斷層為義竹斷層主要的反向逆斷層,該斷層為東西走向、向北傾斜並且切穿近海床地層,其他斷層的分布則集中於A1斷層與義竹斷層之間,此斷層空間分布與近代地震分布趨勢一致。此外,海床底質剖面分別顯示義竹斷層在海床上的斷層崖以及A1斷層具生長地層的特徵之上盤沉積物影像,顯示義竹斷層與A1斷層應為活動斷層。斷層帶往台灣一側逐漸停止活動,澎湖水道東側的斷層頂點大多終止於中期更新世的侵蝕面,顯示靠近台灣造山帶一側的斷層較早停止伸張滑移,而震源機制也顯示本區域以走向滑移解為主。
    由海床底質剖面的變頻聲納的回聲特性分析,可以解析澎湖水道以及其兩側海床的堆積或侵蝕特徵。結果顯示澎湖水道地形起伏通常為近代侵蝕作用造成,與構造活動較無關係;水道東西兩側則以堆積為主。在曾文溪三角洲外海的堆積區中發現三組水道侵蝕現象,可能分別是發育於古曾文溪、現代曾文溪以及二仁溪的異重流侵蝕所形成,高解析反射震測顯示海床底下沒有斷層活動並且有水道往南側向移棲的沉積特徵。


    Yichu fault which is a NE-SW trending, south dipping normal fault has been documented as a main structure offshore Tainan, southwestern Taiwan. This fault and faults nearby may be active suggested by seismic activity. High resolution seismic profiles currently indicate that densely active faults spreading about 20 km on the hanging wall of Yichu fault. Most of these faults are E-W trending with extensional displacement, penetrating the upper Pliocene strata at least. A1 fault is the most active antithetic fault, bounding the fault zoon in substance. On the other hand, sub-bottom profile provides fault scarp and growth-strata image upon the seafloor of Yichu fault and A1fault, respectively.
    Focal mechanism shows strike-slip stress transition field between the N-S extensional stress in Taiwan strait to the west and the oblique compressional stress on Taiwan orogeny to the East. By the observation, faults cease below Pleistocene submarine canyon system in the Eastern Penghu channel, Taiwan strait. By contrast, in the Western Penghu channel, those fault shows active reaching seafloor almost. The difference of fault geometry may be the result of stress field transiting from extension to strike-slip region.

    目錄 中文摘要…………………………………………………………………………i 英文摘要…………………………………………………………………………ii 致謝………………………………………………………………………………iii 目錄………………………………………………………………………………iv 圖目錄……………………………………………………………………………v 第一章 緒論………………………………………………………………………1 1.1動機與目的…………………………………………………………………1 1.2研究區域……………………………………………………………………2 第二章 區域地質背景………………………………………………………………5 2.1台灣西部盆地地體構造……………………………………………………5 2.2台南盆地地層與構造演育 ………………………………………………6 第三章 研究方法…………………………………………………………………14 3.1資料收集…………………………………………………………………14 3.2震測資料處理……………………………………………………………15 3.3變頻聲納資料處理………………………………………………………18 第四章 台南外海正斷層…………………………………………………………24 4.1地層反射特性……………………………………………………………24 4.2更新世深海峽谷…………………………………………………………26 4.3台南盆地斷層形貌………………………………………………………27 4.4斷層與地震相關性討論…………………………………………………28 第五章 澎湖水道近代沉積現象…………………………………………………53 5.1台灣海峽水文及地形特徵………………………………………………53 5.2回聲型態分析與海床底質剖面…………………………………………54 5.3澎湖水道沉積特徵………………………………………………………54 第六章 結論……………………………………………………………………60 參考資料…………………………………………………………………………61 附錄………………………………………………………………………………68 圖目錄 圖1.1台灣西部及外海地震分布………………………………………3 圖1.2台灣西部至西南部平原陸域反射震測剖面……………………………4 圖2.1台灣海峽及台灣島地層與地體架構簡圖……………………………8 圖2.2 海域台南盆地地質分區及盆地演化示意圖……………………………9 圖2.3 義竹斷層(A斷層)上下盤地層厚度比對……………………………10 圖2.4 北港高區圓片蟲石灰岩等深圖以及剖面……………………………11 圖2.5台南盆地西北-東南巷震測剖面……………………………12 圖2.6 二重溪層、崁下寮層深海峽谷分布圖……………………………13 圖3.1 本研究之資料收集………………………………………………19 圖3.2 本研究反射震測資料處理流程圖……………………………20 圖3.3 原始資料近支距集合與頻譜圖……………………………21 圖3.4 傾斜濾波效果展示……………………………………………22 圖3.5 預測解迴旋效果展示………………………………………23 圖4.1 測線1033-1之原始及解釋反射震測剖面…………………………30 圖4.2 測線1033-2之原始及解釋反射震測剖面…………………………31 圖4.3 測線1033-3之原始及解釋反射震測剖面…………………………32 圖4.4 測線1033-4之原始及解釋反射震測剖面…………………………33 圖4.5 測線1033-5之原始及解釋反射震測剖面…………………………34 圖4.6 測線1033-6之原始及解釋反射震測剖面…………………………35 圖4.7 測線1033-7之原始及解釋反射震測剖面…………………………36 圖4.8 測線1033-8之原始及解釋反射震測剖面…………………………37 圖4.9 測線1033-9之原始及解釋反射震測剖面…………………………38 圖4.10 測線tie1之原始及解釋反射震測剖面…………………………39 圖4.11 測線tie2之原始及解釋反射震測剖面…………………………40 圖4.13 井測資料岩性及地層對比……………………………41 圖4.14 分離不整合與中生代基盤反射特徵……………………………42 圖4.15 上新統反射特徵……………………………………………43 圖4.16 更新世侵蝕面反射特徵……………………………………44 圖4.17 更新世侵蝕面分布範圍………………………………………45 圖4.18 A1斷層之近海床震測剖面及海床底質剖面…………………46 圖4.19 更新世侵蝕面與斷層截切關係……………………………47 圖4.20 斷層側向追蹤………………………………………………48 圖4.21 中生代基盤面構造分布圖………………………………………49 圖4.22 上部上新統構造分布圖…………………………………………50 圖4.23 近代地層構造分布圖…………………………………………51 圖4.24 台南外海斷層與地震分布……………………………………52 圖5.1 台灣海峽地形單元…………………………………………………55 圖5.2 海床底質剖面之迴聲型態………………………………………56 圖5.3 迴聲型態分析結果…………………………………………………57 圖5.4 古曾文溪水道的海床底質剖面及淺層震測剖面………………58 圖5.5 澎湖水道近代沉積現象………………………………………59 圖A1.1 反射參數描述用語……………………………………………68 圖A1.2 反射外型上下界描述用語……………………………………68

    中文參考文獻
    李長之、黃旭燦、王佳彬 (2010) 台灣第三紀的石油系統. 鑛冶: 中國鑛冶工程學會會刊, (211), 97-114.
    李重毅、徐祥宏、楊池清(1994)台南盆地裂縫儲集層分佈。探採研究彙報,第17期,第157-170頁。
    林國安、楊耿明、宣大衡、張資宜、梁守謙 (1994) 台南盆地油氣潛能綜合評估。探採研究彙報,第十七期,171~196頁。
    周錦德、原振雄、楊耿明 (1986) 新營地區震測資料所顯示的地質意義及可能的油氣儲集。探採研究彙報,第九期,1-19 頁。
    紀文榮 (1981) 雲林縣北港附近各探井口蓋蟲石灰岩、圓片蟲石灰岩及貝類石灰岩之層位。地質3卷,63~71頁。
    張瑞津、石再添、陳翰霖 (1997) 台灣西南部嘉南海岸平原河道變遷之研究。國立台灣師範大學地理研究報告第二十七期。
    黃旭燦 (2003) 台灣中南部褶皺逆衝斷層帶地質構造特徵分析, 中央大學地球物理研究所 (Doctoral dissertation, 博士論文).
    游明聖 (1994) 明清時代的破壞性地震海嘯記錄,氣象學報,40(1):37-46
    潘玉生 (1992) 震測資料之認識與解釋石油探勘技術。中國石油股份有限公司海域及海外石油探勘處,測勘篇第 1 卷,282 頁。
    董德輝 (1997) 台灣西南海域澎湖水道變遷之研究, 國立師範大學地理學系(博士論文)
    曹昌桂 (1991) 台灣西南海域白堊系油氣潛能之研究。中油公司海域及海外石油探勘處,八十年度專題研究報告,共74頁。
    鄭世楠 (2013) 臺灣地區歷史地震文獻資料庫 (http://tec.earth.sinica.edu.tw/TEM/hisevent/hisdoc.php)
    英文參考文獻
    Chen, W. S., Ridgway, K. D., Horng, C. S., Chen, Y. G., Shea, K. S., & Yeh, M. G. (2001). Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Geological Society of America Bulletin, 113(10), 1249-1271.
    Chen, Y. G., & Liu, T. K. (1996). Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait. Quaternary Research, 45(3), 254-262.
    Dalrymple, R. W., & Choi, K. (2007). Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews, 81(3), 135-174.
    Fuh, S. C., Chern, C. C., Liang, S. C., Yang, Y. L., Wu, S. H., Chang, T. Y., & Lin, J. Y. (2009). The biogenic gas potential of the submarine canyon systems of Plio-Peistocene foreland Basin, southwestern Taiwan. Marine and Petroleum Geology, 26(7), 1087-1099.
    Fuh, S. C., Liu, C. S., & Wu, M. S. (1997). Migration of canyon systems from Pliocene to Pleistocene in area between Hsyning structure and Kaoping Slope and its application for hydrocarbon exploration. Petroleum Geology of Taiwan,31, 43-60.
    Huang, B. S., Chen, K. C., Yen, H. Y., & Yao, Z. X. (1999). Re-examination of the epicenter of the 16 September 1994 Taiwan Strait earthquake using the beam-forming method. TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 10, 529-542.
    Huang, S. T., Yang, K. M., Hung, J. H., Wu, J. C., Ting, H. H., Mei, W. W. & Lee, M. (2004). Deformation front development at the northeast margin of the Tainan basin, Tainan–Kaohsiung area, Taiwan. Marine Geophysical Researches, 25(1-2), 139-156.
    Huang, Z. Y., & Yu, H. S. (2003). Morphology and geologic implications of Penghu Channel off southwest Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 14(4), 469-485.
    Huh, C. A., Chen, W., Hsu, F. H., Su, C. C., Chiu, J. K., Lin, S. & Huang, B. J. (2011). Modern (< 100 years) sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research, 31(1), 47-63.
    Jan, S., Chern, C. S., & Wang, J. (2002). Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. Journal of Oceanography, 58(6), 837-850.
    Jan, S., & Chao, S. Y. (2003). Seasonal variation of volume transport in the major inflow region of the Taiwan Strait: The Penghu Channel. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6), 1117-1126.
    Lee, T.-Y., Tang, C.-H., Ting, J.-S., Hsu, Y.-Y. (1993) Sequence stratigraphy of the Tainan basin, offshore southwestern Taiwan. Petrol. Geol. Taiwan, 28, 119-158.
    Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
    Lin, A. T., & Watts, A. B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B9), ETG-2.
    Lin, A. T., Cenozoic stratigraphy and tectonic development of the west Taiwan basins, Ph.D. thesis, 246 pp., Univ. of Oxford, Oxford, UK, 2001.
    Lin, M.S., Hsiao, C.L. (2004) Seismotectonic model of the Tainan basin, southwestern Taiwan: Acta Seismologica Sinica, 17(4), 447-452.
    Liao, H. R., Yu, H. S., & Su, C. C. (2008). Morphology and sedimentation of sand bodies in the tidal shelf sea of eastern Taiwan Strait. Marine Geology,248(3), 161-178.
    Liu, C.S., Liu, S.Y., Lallemand, S.E., Lundberg, M., & Reed, D.L., 1998, Digital Elevation Model Offshore Taiwan and its Tectonic Implications. Terr. Atmos. Ocean. Sci, 9(4), 705-738.
    Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1), 65-76.
    Mauduit, T., & Brun, J. P. (1998). Growth fault/rollover systems: Birth, growth, and decay. Journal of Geophysical Research: Solid Earth (1978–2012),103(B8), 18119-18136.
    Ma, K. F., & Chen, J. Y. (1999). Focal Mechanism Determinations of the 1991 Chiali Earthquake (M (Subscript L)= 5.7) Sequence. Terrestrial, Atmospheric and Oceanic Sciences, 10(2), 447-470.
    Milliman, J. D., & Kao, S. J. (2005). Hyperpycnal discharge of fluvial sediment to the ocean: Impact of Super‐Typhoon Herb (1996) on Taiwanese rivers. The Journal of geology, 113(5), 503-516.
    Mitchum Jr, R. M., Vail, P. R., & Thompson III, S. (1977). Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation.
    Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E. & Pekar, S. F. (2005). The Phanerozoic record of global sea-level change. science, 310(5752), 1293-1298.
    Moore, G. F., Boston, B. B., Sacks, A. F., & Saffer, D. M. (2013). Analysis of normal fault populations in the Kumano Forearc Basin, Nankai Trough, Japan: 1. Multiple orientations and generations of faults from 3‐D coherency mapping.Geochemistry, Geophysics, Geosystems, 14(6), 1989-2002.
    Stow, D. A., & Mayall, M. (2000). Deep-water sedimentary systems: new models for the 21st century. Marine and Petroleum Geology, 17(2), 125-135.
    Tang, C. H. (1977). Late Miocene erosional unconformity on the subsurface Peikang High beneath the Chiayi-Yunlin coastal plain, Taiwan. Mem. Geol. Soc. China, 2, 155-167.
    Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1), 57-76.
    Teng, L. S., & Lin, A. T. (2004). Cenozoic tectonics of the China continental margin: Insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313-332.
    Tsai, Y. B., & Chiu, J. M. (1976). An active fault at the estuary of the Tsengwen-hsi in southwestern Taiwan: Petrol. Geol. Taiwan, 13, 209-224.
    Yu, H. S., & Hong, E. (2006). Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences, 27(6), 922-932.
    Vail, P. R. (1987). Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: Seismic stratigraphy interpretation procedure.
    Wang, Y. H., Jan, S., & Wang, D. P. (2003). Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001).Estuarine, Coastal and Shelf Science, 57(1), 193-199.
    Wessel, P., & Smith, W. H. (1998). New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47), 579-579.
    Wu, Y. M., Zhao, L., Chang, C. H., & Hsu, Y. J. (2008). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651-661
    Yang, K.-M., Ting, H.-H., Yuan, J. (1991) Structural styles and tectonic modes of Neogene extensional tectonics in southwestern Taiwan: Implications for hydrocarbon exploration. Petrol. Geol. Taiwan, 26, 1-31.
    Zong, Y. (2004). Mid-Holocene sea-level highstand along the Southeast Coast of China. Quaternary International, 117(1), 55-67. 

    QR CODE
    :::