跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李建霖
Jian-Lin Li
論文名稱: 應用於毫米波多輸入多輸出系統通道追蹤之奇異值分解器設計與實作
Design and Implementation of Singular Value Decomposition for Channel Tracking in mmWave MIMO Systems
指導教授: 蔡佩芸
Pei-Yun Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 預編碼毫米波多輸入多輸出系統奇異值分解
外文關鍵詞: Precoding, mmWave, MIMO System, SVD
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊系統中基地台與使用者接收端天線數量日益提升,系統必須承受比以往更高的運算複雜度,因此多種預編碼(Precoding)技術不斷的被提出,目的是為了能夠減少接收端(receiver)複雜度,將複雜的運算集中至發送端(transmitter),使接收端能有降低成本、縮小面積及低功耗的優點。在多輸入多輸出無線通訊系統中,奇異值分解(Singular Value Decomposition, SVD)常用來計算發射端和接收端所採用之預編碼、波束成形(beamforming)以及解碼(decoding),有助於實現信號強化與干擾消除。本論文採用混冪式演算法(Hybrid Power Method, HPM)追蹤毫米波(mmWave)通道,其內部初始化階段使用自冪式演算法(Self-Power Method, SPM)取得初始奇異值,之後追蹤階段藉由自調整逆冪式演算法(Self-Adjusting Inverse Power Method, SA-IPM)每次迭代時自我調整,加快收斂速度追蹤奇異值。相較於SPM,SA-IPM具有優異的收斂速度且擁有更低的複雜度,同時能夠支援平行處理提高吞吐量(throughput)。硬體設計部分,核心架構QR分解以座標軸旋轉計數器(Coordinate Rotation Digital Computer, CORDIC) 配合脈動陣列(systolic array)實現硬體,可支援2×2至16×32的矩陣分解。對一個16×32通道矩陣進行奇異值分解,內部QR分解需474個時脈數,而完成一次奇異值分解共需616個時脈數。以TSMC 40nm製程設計晶片,最高操作頻率為143MHz,未平行處理下吞吐量每秒可分解232K個奇異行向量(vector/s),功率消耗66.4mW;倘若QR分解器增加為3個並採用平行處理,吞吐量可達每秒分解904K個奇異行向量(vectors/s)。


    Due to the increasing antenna number at the base station and user terminal, higher computational complexity is induced. To reduce the complexity of receiver, there are many precoding techniques are proposed to achieve lower cost, smaller area and lower power. In the multiple input multiple output (MIMO) wireless communication systems, singular value decomposition (SVD) generate precoding, beamforming and decoding matrix at transmitter and receiver [1]. It can enhance the signal concentration and remove interference. In this thesis, hybrid power method (HPM) is used for SVD to track mmWave channel. In the initialization phase, initial singular value is obtained by the self power method (SPM). And then in the tracking phase, self-adjusting is utilized in each iteration by self-adjusting inverse power method (SA-IPM) to track singular value. Compare to SPM and SA-IPM, SA-IPM not only has excellent convergence and low complexity but also gets higher throughput in parallel processing.
    In SA-IPM hardware design, the core architecture is QR decomposition, which is realized by Coordinate Rotation Digital Computer and systolic array. It can support a matrix size form 2×2 to16×16. To decompose a 16×16 channel matrix, QR decomposition takes 474 clocks, and it needs 616 clocks for a singular value decomposition. Through the TSMC 40nm process, the highest clock operating frequency reaches 143MHz. Throughput is 232K column vector per second without parallel processing and power consumption is 66.4mW. If three QR decomposition is used and parallel processing is considered, throughput can be increased to 904K column vector per second.

    摘要 I Abstract II 目錄 III 圖示目錄 VI 表格目錄 X 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 1 1.3 論文組織 2 第二章 系統模型(MIMO system model) 3 2.1 奇異值分解預編碼矩陣(SVD based MIMO precoding Matrix) 3 2.2 通道模型(Channel model) 5 2.2.1 流程圖(Flow chart) 6 2.2.2 發送端與接收端天線陣列(Antenna Arrays) 7 2.2.3 場景選擇(Scenarios) 9 2.2.4 Large scale parameters 13 2.2.5 Small scale parameters 15 2.2.6 分段過渡期(Transition between segment) 18 2.2.7 漂移(Drifting)20 2.2.8 通道模型輸出(Channel model outputs) 23 2.2.9 模擬結果 25 第三章 多輸入多輸出奇異值分解預編碼系統 27 3.1 奇異值分解(SVD)與特徵值分解(EVD) 27 3.2 混冪式演算法(Hybrid Power Method, HPM) 28 3.3 自冪式演算法(Self-Power Method, SPM) 30 3.4 自調整逆冪式演算法 (Self-Adjusting Inverse Power Method, SA-IPM) 31 3.5 性能模擬與複雜度分析 34 3.5.1 性能模擬比較 35 3.5.2 複雜度分析比較 37 第四章 硬體架構設計與實現 42 4.1 混冪式演算法硬體電路架構 42 4.2 硬體資料型態 43 4.2.1 數值動態範圍分析 43 4.2.2 硬體字元長度模擬分析 45 4.3 硬體設計(Hardware architecture) 48 4.3.1 浮點數轉定點數硬體設計 48 4.3.2 定點數轉浮點數硬體設計 49 4.3.3 加法器 50 4.3.4 乘法器與平方器 52 4.3.5 CORDIC硬體設計(CORDIC hardware) 54 4.3.6 除法器 60 4.3.7 開根號器 63 4.3.8 QR分解硬體設計(QR decomposistion hardware) 67 4.4 資料流控制與排程 74 4.4.1 HPM硬體控制與排程 74 4.4.2 QR硬體控制與排程 78 4.5 記憶體 83 4.5.1 A矩陣記憶體 83 4.5.2 R矩陣記憶體 84 4.5.3 V矩陣記憶體 86 第五章 硬體實作結果與比較 88 5.1 硬體實現結果88 5.2 硬體比較 93 第六章 結論 96 參考資料 97

    [1] Pei-Yun Tsai, Yi Chang, and Jian-Lin Li, "Fast-Convergence Singular Value Decomposition for Tracking Time-Varying Channels in Massive Mimo Systems," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp. 1085-1089.
    [2] 3GPP, “3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Study on channel model for frequencies from 0.5 to 100 GHz(Release 14),” TR 38.901 V14.2.0, 2017.
    [3] S. Jaeckel, L. Raschkowski, K. Börner, L. Thiele, F. Burkhardt and E. Eberlein, “QuaDRiGa- Quasi Deterministic Radio Channel Generator, User Manual and Documentation,” Fraunhofer Heinrich Hertz Institute, Tech. Rep. v2.0.0, 2017.
    [4] O. E. Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, "Low Complexity Precoding for Large Millimeter Wave MIMO Systems," in 2012 IEEE International Conference on Communications (ICC), Jun. 2012, pp. 3724-3729.
    [5] C. Z. Zhan, Y. L. Chen, and A. Y. Wu, "Iterative Superlinear-Convergence SVD Beamforming Algorithm and VLSI Architecture for MIMO-OFDM Systems," IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3264-3277, June. 2012.
    [6] C.-H. Yang, C.-W. Chou, C.-S. Hsu, and C.-E. Chen, "A systolic array based GTD processor with a parallel algorithm," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 4, pp. 1099-1108, Apr. 2015.
    [7] D. Guenther, R. Leupers, and G. Ascheid, "A scalable, multimode SVD precoding ASIC based on the cyclic Jacobi method," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 8, pp. 1283-1294, Aug. 2016.
    [8] W. Kahan, "IEEE Standard 754 for Binary Floating-Point Arithmetic," Lecture Notes on the Status of IEEE 754, Elect. Eng. & Computer Science University of California, Berkeley CA 94720-1776, May. 1996.
    [9] Y.M. Hu, "CORDIC-based VLSI architectures for digital signal processing," IEEE Signal Processing Magazine, vol. 9, pp. 16-35, July. 1992.
    [10] R. M. Hewlitt and E. S. Swartzlantler, "Canonical signed digit representation for FIR digital filters," in Proc. IEEE Worksh. Signal Process. Syst., 2000, pp. 416-426.
    [11] Chih-Hsien Lin, Design of MU-MIMO Precoding Algorithm and Essential Module, National Central University, Master Thesis, 2012.
    [12] A. Maltsev, V. Pestretsov, R. Maslennikov, and A. Khoryaev, "Triangular systolic array with reduced latency for QR-decomposition of complex matrices," in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2006, pp. 385-388.
    [13] Takaya Kaji, Shingo Yoshizawa, Yoshikazu Miyanaga, "Development of an ASIP-based singular value decomposition processor in SVD-MIMO systems," in Proc. ISPACS, Dec. 2011, pp. 1-5.
    [14] Chun-Hun Wu and Pei-Yun Tsai, "An SVD Processor Based on Golub-Reinsch Algorithm for MIMO Precoding With Adjustable Precision," IEEE Transactions on Circuits and Systems I: Regular Papers, 2019.
    [15] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge university press, 1985.
    [16] Y.-T. Hwang, K.-T. Chen, and C.-K. Wu, "A high throughput unified SVD/QRD precoder design for MIMO OFDM systems," in Proc. IEEE Int. Conf. Digit. Signal Process. (DSP), Jul. 2015, pp. 1148-1151.

    QR CODE
    :::