| 研究生: |
彭俊傑 Jyun-Jie Pon |
|---|---|
| 論文名稱: |
等效電路法與k-矩陣法在量子力學之探討 Quantum-Mechanic Simulation using Equivalent-Circuit Method and k-matrix Method |
| 指導教授: |
蔡曜聰
Yao-Tsung Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 薛丁格波動方程式 、量子力學 |
| 外文關鍵詞: | Schrödinger wave equation, KP-model, quantum mechanical |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們在論文裡將使用兩種方法來模擬量子力學的系統。第一種方法被稱做k矩陣法,另一個方法則是等效電路法。我們使用這兩種方式來分析周期性的KP-model與非週期性的量子力學系統,由這兩種方式所得到的結果就是薛丁格波動方程式的波函數。另外,我們比較k矩陣法與等效電路法並且得到相同的結果,而我們也會說明這兩種方法的優點與缺點。
In the thesis, we will use two methods to simulate the quantum mechanical systems. The first way is called the k-matrix method, and the other way is the equivalent-circuit method. We use these two methods to analyze periodic KP-model and non-periodic QM systems. The result obtained by these ways is the wave function of the Schrödinger wave equation. Additionally, we will compare the k-matrix method with the equivalent-circuit method and show these results of the k-matrix method are same as the equivalent-circuit method. We will also show the advantages and disadvantages of these two methods.
Reference
[1] C. H. Kao, “An equivalent circuit model of quantum mechanics and its investigation to device simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2004.
[2] J. W. Lee, “An equivalent circuit model for decoupled method in semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2002.
[3] C. L. Teng, “An equivalent circuit approach to mixed-level device and circuit simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 1997.
[4] J. P. Mckelvey, Solid State and Semiconductor Physics, Chapter 4, 6, Robert E. Krieger, Inc., 1966.
[5] C. L. Lin, Modern Physics: Introduction of Solid State Physics, Chapter 5, Wu Nan, Inc., 2004.
[6] B. Arthur, Concepts of Modern Physics, New York: McGraw-Hill, 1995.
[7] A. K. Ghatak, K. Thyagarajan, M. R. Shenoy “A novel numerical technique for solving the one-dimentional Schrödinger equation using matrix approach-application to quantum well structures,” IEEE Journal on Quantum Electronics, vol.24, p.1524-1531, 1988.
[8] N. Zettili, Quantum mechanics : concepts and applications, New York : Wiley, 2001.